TuringsSolutions commited on
Commit
0dfe3cb
·
verified ·
1 Parent(s): 910c416

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +116 -138
app.py CHANGED
@@ -1,154 +1,132 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  image = pipe(
42
- prompt=prompt,
43
  negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
  width=width,
47
  height=height,
 
 
48
  generator=generator,
 
49
  ).images[0]
50
 
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
 
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
 
 
 
 
 
 
102
  with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
 
119
  with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
 
 
 
 
 
2
  import torch
3
+ from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
4
+ from huggingface_hub import hf_hub_download
5
+
6
+ # --- Configuration ---
7
+ # The base model your LoRA was trained on.
8
+ base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
9
+
10
+ # The path to your LoRA file on the Hugging Face Hub.
11
+ lora_repo_id = "TuringsSolutions/EmilyH"
12
+ lora_filename = "emilyh.safetensors"
13
+
14
+ # --- Load the Pipeline ---
15
+ # Use a recommended VAE for SDXL
16
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
17
+ pipe = StableDiffusionXLPipeline.from_pretrained(
18
+ base_model_id,
19
+ vae=vae,
20
+ torch_dtype=torch.float16,
21
+ variant="fp16",
22
+ use_safetensors=True
23
+ )
24
+
25
+ # --- Load and Fuse the LoRA ---
26
+ # Download the LoRA file and load the state dict.
27
+ lora_file_path = hf_hub_download(repo_id=lora_repo_id, filename=lora_filename)
28
+ pipe.load_lora_weights(lora_file_path)
29
+
30
+ # It's recommended to fuse the LoRA weights for better performance,
31
+ # but this is optional. You can also use pipe.set_adapters(["default"], adapter_weights=[0.9])
32
+ # during inference if you prefer more dynamic control.
33
+ # pipe.fuse_lora(lora_scale=0.9) # Fusing is more efficient
34
+
35
+ # Move the pipeline to the GPU
36
+ pipe.to("cuda")
37
+
38
+ # --- Default Settings from your Recommendations ---
39
+ # These are pulled directly from your "Recomendations.txt".
40
+ default_positive_prompt = "masterpiece, best quality, ultra-detailed, realistic skin, intricate details, highres" #
41
+ default_negative_prompt = "low quality, worst quality, blurry, (deformed:1.3), extra fingers, cartoon, 3d, anime, bad anatomy" #
42
+ default_sampler = "DPM++ 2M Karras" #
43
+ default_cfg = 6.0 #
44
+ default_steps = 30 #
45
+ trigger_word = "emilyh" #
46
+ lora_tag_main = "<lora:emilyh:0.9>" #
47
+
48
+
49
+ # --- Define the Inference Function ---
50
+ def generate_image(prompt, negative_prompt, sampler, steps, cfg, width, height, seed):
51
+ """
52
+ Function to generate an image based on user inputs.
53
+ """
54
+ # Combine the user prompt with the trigger word and LoRA tag
55
+ full_prompt = f"{lora_tag_main}, {trigger_word}, {prompt}"
56
+
57
+ # Set the scheduler (sampler)
58
+ if sampler == "DPM++ 2M Karras":
59
+ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
60
+ elif sampler == "DPM++ SDE Karras":
61
+ pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
62
+ else: # Default to DPM++ 2M Karras
63
+ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
64
+
65
+ # Set seed for reproducibility
66
+ generator = torch.Generator("cuda").manual_seed(seed) if seed != -1 else None
67
+
68
+ # Generate the image
69
  image = pipe(
70
+ prompt=full_prompt,
71
  negative_prompt=negative_prompt,
 
 
72
  width=width,
73
  height=height,
74
+ guidance_scale=cfg,
75
+ num_inference_steps=steps,
76
  generator=generator,
77
+ cross_attention_kwargs={"scale": 0.9} # This is an alternative way to apply LoRA scale if not fused
78
  ).images[0]
79
 
80
+ return image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
+ # --- Create the Gradio Interface ---
83
+ with gr.Blocks(css="style.css") as demo:
84
+ gr.Markdown("# `emilyh` LoRA Image Generator")
85
+ gr.Markdown(
86
+ "A Gradio interface for the `emilyh` LoRA. "
87
+ "Based on the recommendations provided. "
88
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
+ with gr.Row():
91
+ with gr.Column():
92
+ prompt = gr.Textbox(label="Positive Prompt", value=default_positive_prompt, lines=3)
93
+ negative_prompt = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
94
+
95
  with gr.Row():
96
+ sampler = gr.Radio(
97
+ label="Sampler",
98
+ choices=["DPM++ 2M Karras", "DPM++ SDE Karras"],
99
+ value=default_sampler,
100
+ ) #
101
+ steps = gr.Slider(label="Steps", minimum=15, maximum=50, value=default_steps, step=1) #
102
+
103
+ cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=10.0, value=default_cfg, step=0.5) #
 
 
 
 
 
 
 
104
 
105
  with gr.Row():
106
+ width = gr.Slider(label="Width", minimum=512, maximum=1024, value=1024, step=64)
107
+ height = gr.Slider(label="Height", minimum=512, maximum=1024, value=1024, step=64)
108
+
109
+ seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=-1, info="Use -1 for a random seed.")
110
+
111
+ generate_button = gr.Button("Generate Image", variant="primary")
112
+
113
+ with gr.Column():
114
+ output_image = gr.Image(label="Generated Image", type="pil")
115
+ gr.Markdown(
116
+ """
117
+ ### 🔧 Usage Guide
118
+ * The trigger word `emilyh` and the LoRA tag `<lora:emilyh:0.9>` are automatically added to your prompt.
119
+ * For best results, generate images in batches and choose the most consistent ones.
120
+ * The LoRA captures the subject's appearance well across various poses and outfits.
121
+ * A weight of 0.9 provides a good balance of likeness and flexibility. Using a weight closer to 1.0 can increase consistency but may cause stiffness.
122
+ * This interface does not include ADetailer, which is recommended for final face refinement.
123
+ """
124
+ )
125
+
126
+ generate_button.click(
127
+ fn=generate_image,
128
+ inputs=[prompt, negative_prompt, sampler, steps, cfg, width, height, seed],
129
+ outputs=output_image
 
 
 
 
 
 
 
130
  )
131
 
132
+ demo.launch()