Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
# Load model and tokenizer
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B")
|
8 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B")
|
9 |
+
|
10 |
+
class Agent:
|
11 |
+
def __init__(self, id, api_key=None):
|
12 |
+
self.id = id
|
13 |
+
self.task = None
|
14 |
+
self.results = None
|
15 |
+
self.api_key = api_key
|
16 |
+
|
17 |
+
def execute_task(self):
|
18 |
+
if self.task:
|
19 |
+
print(f"Agent {self.id} is making an API call to '{self.task}'")
|
20 |
+
headers = {"Authorization": f"Bearer {self.api_key}"} if self.api_key else {}
|
21 |
+
try:
|
22 |
+
response = requests.get(self.task, headers=headers)
|
23 |
+
if response.status_code == 200:
|
24 |
+
self.results = response.json()
|
25 |
+
else:
|
26 |
+
self.results = "Error: Unable to fetch data"
|
27 |
+
print(f"Agent {self.id} received: {self.results}")
|
28 |
+
except Exception as e:
|
29 |
+
self.results = f"Error: {str(e)}"
|
30 |
+
print(f"Agent {self.id} encountered an error: {str(e)}")
|
31 |
+
|
32 |
+
def communicate(self, other_agents):
|
33 |
+
pass
|
34 |
+
|
35 |
+
class Swarm:
|
36 |
+
def __init__(self, num_agents, fractal_pattern, api_key=None):
|
37 |
+
self.agents = [Agent(i, api_key) for i in range(num_agents)]
|
38 |
+
self.fractal_pattern = fractal_pattern
|
39 |
+
print(f"Swarm created with {num_agents} agents using the {fractal_pattern} pattern.")
|
40 |
+
|
41 |
+
def assign_tasks(self, tasks):
|
42 |
+
for i, task in enumerate(tasks):
|
43 |
+
self.agents[i % len(self.agents)].task = task
|
44 |
+
print(f"Task assigned to Agent {self.agents[i % len(self.agents)].id}: {task}")
|
45 |
+
|
46 |
+
def execute(self):
|
47 |
+
for agent in self.agents:
|
48 |
+
agent.execute_task()
|
49 |
+
for agent in self.agents:
|
50 |
+
agent.communicate(self.agents)
|
51 |
+
|
52 |
+
def gather_results(self):
|
53 |
+
return [agent.results for agent in self.agents if agent.results]
|
54 |
+
|
55 |
+
def generate_tasks_from_model(prompt, num_tasks):
|
56 |
+
# Generate tasks using the Qwen model
|
57 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
58 |
+
outputs = model.generate(**inputs, max_length=100, num_return_sequences=num_tasks)
|
59 |
+
tasks = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
|
60 |
+
return tasks
|
61 |
+
|
62 |
+
def run_swarm(prompt, api_key, num_agents, num_tasks):
|
63 |
+
# Generate tasks using the model
|
64 |
+
tasks = generate_tasks_from_model(prompt, num_tasks)
|
65 |
+
|
66 |
+
# Create a swarm with a fractal pattern (Pentagonal spread)
|
67 |
+
swarm = Swarm(num_agents=num_agents, fractal_pattern="Pentagonal", api_key=api_key)
|
68 |
+
swarm.assign_tasks(tasks)
|
69 |
+
swarm.execute()
|
70 |
+
|
71 |
+
# Gather results
|
72 |
+
results = swarm.gather_results()
|
73 |
+
|
74 |
+
# Print all results
|
75 |
+
print("\nAll results retrieved by the swarm:")
|
76 |
+
for i, result in enumerate(results):
|
77 |
+
print(f"Result {i + 1}: {result}")
|
78 |
+
|
79 |
+
return results
|
80 |
+
|
81 |
+
def gradio_interface(prompt, api_key, num_agents, num_tasks):
|
82 |
+
results = run_swarm(prompt, api_key, num_agents, num_tasks)
|
83 |
+
return "\n".join(str(result) for result in results)
|
84 |
+
|
85 |
+
# Default values for the inputs
|
86 |
+
default_prompt = "Generate API calls to fetch random cat facts."
|
87 |
+
default_api_key = ""
|
88 |
+
default_num_agents = 5
|
89 |
+
default_num_tasks = 2
|
90 |
+
|
91 |
+
iface = gr.Interface(
|
92 |
+
fn=gradio_interface,
|
93 |
+
inputs=[
|
94 |
+
gr.Textbox(label="Prompt", placeholder="Enter the prompt", value=default_prompt),
|
95 |
+
gr.Textbox(label="API Key (Optional)", placeholder="Enter the API Key", value=default_api_key),
|
96 |
+
gr.Number(label="Number of Agents", value=default_num_agents, precision=0),
|
97 |
+
gr.Number(label="Number of Tasks", value=default_num_tasks, precision=0)
|
98 |
+
],
|
99 |
+
outputs=gr.Textbox(label="Results"),
|
100 |
+
title="Swarm Model Processing and Result Gatherer",
|
101 |
+
description="""
|
102 |
+
This Gradio app demonstrates a swarm of agents using a language model to generate API calls and gather results.
|
103 |
+
- The language model generates API calls based on the provided prompt.
|
104 |
+
- The swarm is created based on a fractal geometry pattern.
|
105 |
+
- Each agent makes an API call to the generated URLs and retrieves data.
|
106 |
+
- The results from all agents are gathered and displayed.
|
107 |
+
- Enter the prompt, API Key (optional), number of agents, and number of tasks to see the process in action.
|
108 |
+
- By default, the app uses the prompt 'Generate API calls to fetch random cat facts' with 5 agents and 2 tasks.
|
109 |
+
"""
|
110 |
+
)
|
111 |
+
|
112 |
+
iface.launch()
|