File size: 12,307 Bytes
7970f31
 
 
 
d4035c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7970f31
 
 
d4035c3
7970f31
d4035c3
7970f31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4035c3
7970f31
 
d4035c3
 
 
 
 
 
 
 
 
 
 
 
 
7970f31
d4035c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt

def relu(x):
    return np.maximum(0, x)

def relu_derivative(x):
    return (x > 0).astype(float)

def tanh(x):
    return np.tanh(x)

def tanh_derivative(x):
    return 1 - np.tanh(x)**2

class EveOptimizer:
    def __init__(self, params, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
        self.params = params
        self.lr = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.t = 0
        self.m = [np.zeros_like(p) for p in params]
        self.v = [np.zeros_like(p) for p in params]
        self.fractal_memory = [np.zeros_like(p) for p in params]

    def step(self, grads):
        self.t += 1
        for i, (param, grad) in enumerate(zip(self.params, grads)):
            self.m[i] = self.beta1 * self.m[i] + (1 - self.beta1) * grad
            self.v[i] = self.beta2 * self.v[i] + (1 - self.beta2) * (grad ** 2)

            m_hat = self.m[i] / (1 - self.beta1 ** self.t)
            v_hat = self.v[i] / (1 - self.beta2 ** self.t)

            fractal_factor = self.fractal_adjustment(param, grad)
            self.fractal_memory[i] = 0.9 * self.fractal_memory[i] + 0.1 * fractal_factor

            param -= self.lr * m_hat / (np.sqrt(v_hat) + self.epsilon) * self.fractal_memory[i]

    def fractal_adjustment(self, param, grad):
        c = np.mean(grad) + 1j * np.std(param)
        z = 0
        for _ in range(10):
            z = z**2 + c
            if abs(z) > 2:
                break
        return 1 / (1 + abs(z))

class BatchNormalization:
    def __init__(self, input_shape):
        self.gamma = np.ones(input_shape)
        self.beta = np.zeros(input_shape)
        self.epsilon = 1e-5
        self.moving_mean = np.zeros(input_shape)
        self.moving_var = np.ones(input_shape)

    def forward(self, x, training=True):
        if training:
            mean = np.mean(x, axis=0)
            var = np.var(x, axis=0)
            self.moving_mean = 0.99 * self.moving_mean + 0.01 * mean
            self.moving_var = 0.99 * self.moving_var + 0.01 * var
        else:
            mean = self.moving_mean
            var = self.moving_var

        x_norm = (x - mean) / np.sqrt(var + self.epsilon)
        out = self.gamma * x_norm + self.beta
        if training:
            self.cache = (x, x_norm, mean, var)
        return out

    def backward(self, dout):
        x, x_norm, mean, var = self.cache
        m = x.shape[0]

        dx_norm = dout * self.gamma
        dvar = np.sum(dx_norm * (x - mean) * -0.5 * (var + self.epsilon)**(-1.5), axis=0)
        dmean = np.sum(dx_norm * -1 / np.sqrt(var + self.epsilon), axis=0) + dvar * np.mean(-2 * (x - mean), axis=0)

        dx = dx_norm / np.sqrt(var + self.epsilon) + dvar * 2 * (x - mean) / m + dmean / m
        dgamma = np.sum(dout * x_norm, axis=0)
        dbeta = np.sum(dout, axis=0)

        return dx, dgamma, dbeta

class Reward:
    def __init__(self):
        self.lowest_avg_batch_loss = float('inf')
        self.lowest_max_batch_loss = float('inf')
        self.best_weights = None

    def update(self, avg_batch_loss, max_batch_loss, network):
        improved = False
        if avg_batch_loss < self.lowest_avg_batch_loss:
            self.lowest_avg_batch_loss = avg_batch_loss
            improved = True
        if max_batch_loss < self.lowest_max_batch_loss:
            self.lowest_max_batch_loss = max_batch_loss
            improved = True
        if improved:
            self.best_weights = self.get_network_weights(network)

    def get_network_weights(self, network):
        weights = []
        for layer in network.layers:
            layer_weights = []
            for agent in layer.agents:
                agent_weights = {
                    'weights': agent.weights.copy(),
                    'bias': agent.bias.copy(),
                    'bn_gamma': agent.bn.gamma.copy(),
                    'bn_beta': agent.bn.beta.copy()
                }
                layer_weights.append(agent_weights)
            weights.append(layer_weights)
        return weights

    def apply_best_weights(self, network):
        if self.best_weights is not None:
            for layer, layer_weights in zip(network.layers, self.best_weights):
                for agent, agent_weights in zip(layer.agents, layer_weights):
                    agent.weights = agent_weights['weights'].copy()
                    agent.bias = agent_weights['bias'].copy()
                    agent.bn.gamma = agent_weights['bn_gamma'].copy()
                    agent.bn.beta = agent_weights['bn_beta'].copy()

class Agent:
    def __init__(self, id, input_size, output_size, fractal_method):
        self.id = id
        self.weights = np.random.randn(input_size, output_size) * np.sqrt(2. / input_size)
        self.bias = np.zeros((1, output_size))
        self.fractal_method = fractal_method
        self.bn = BatchNormalization((output_size,))

        self.optimizer = EveOptimizer([self.weights, self.bias, self.bn.gamma, self.bn.beta])

    def forward(self, x, training=True):
        self.last_input = x
        z = np.dot(x, self.weights) + self.bias
        z_bn = self.bn.forward(z, training)
        self.last_output = relu(z_bn)
        return self.last_output

    def backward(self, error, l2_lambda=1e-5):
        delta = error * relu_derivative(self.last_output)
        delta, dgamma, dbeta = self.bn.backward(delta)

        dw = np.dot(self.last_input.T, delta) + l2_lambda * self.weights
        db = np.sum(delta, axis=0, keepdims=True)

        self.optimizer.step([dw, db, dgamma, dbeta])

        return np.dot(delta, self.weights.T)

    def apply_fractal(self, x):
        return self.fractal_method(x)

class Swarm:
    def __init__(self, num_agents, input_size, output_size, fractal_method):
        self.agents = [Agent(i, input_size, output_size, fractal_method) for i in range(num_agents)]

    def forward(self, x, training=True):
        results = [agent.forward(x, training) for agent in self.agents]
        return np.mean(results, axis=0)

    def backward(self, error, l2_lambda):
        errors = [agent.backward(error, l2_lambda) for agent in self.agents]
        return np.mean(errors, axis=0)

    def apply_fractal(self, x):
        results = [agent.apply_fractal(x) for agent in self.agents]
        return np.mean(results, axis=0)

class SwarmNeuralNetwork:
    def __init__(self, layer_sizes, fractal_methods):
        self.layers = []
        for i in range(len(layer_sizes) - 2):
            self.layers.append(Swarm(num_agents=3,
                                     input_size=layer_sizes[i],
                                     output_size=layer_sizes[i+1],
                                     fractal_method=fractal_methods[i]))
        self.output_layer = Swarm(num_agents=1,
                                  input_size=layer_sizes[-2],
                                  output_size=layer_sizes[-1],
                                  fractal_method=fractal_methods[-1])
        self.reward = Reward()

    def forward(self, x, training=True):
        self.layer_outputs = [x]
        for layer in self.layers:
            x = layer.forward(x, training)
            self.layer_outputs.append(x)
        self.final_output = tanh(self.output_layer.forward(x, training))
        return self.final_output

    def backward(self, error, l2_lambda=1e-5):
        error = error * tanh_derivative(self.final_output)
        error = self.output_layer.backward(error, l2_lambda)
        for i in reversed(range(len(self.layers))):
            error = self.layers[i].backward(error, l2_lambda)

    def train(self, X, y, epochs, batch_size=32, l2_lambda=1e-5, patience=50):
        best_mse = float('inf')
        patience_counter = 0

        for epoch in range(epochs):
            indices = np.arange(len(X))
            np.random.shuffle(indices)

            self.reward.apply_best_weights(self)

            epoch_losses = []
            for start_idx in range(0, len(X) - batch_size + 1, batch_size):
                batch_indices = indices[start_idx:start_idx+batch_size]
                X_batch = X[batch_indices]
                y_batch = y[batch_indices]

                output = self.forward(X_batch)
                error = y_batch - output

                error = np.clip(error, -1, 1)

                self.backward(error, l2_lambda)

                epoch_losses.append(np.mean(np.square(error)))

            avg_batch_loss = np.mean(epoch_losses)
            max_batch_loss = np.max(epoch_losses)
            self.reward.update(avg_batch_loss, max_batch_loss, self)

            mse = np.mean(np.square(y - self.forward(X, training=False)))

            if epoch % 100 == 0:
                print(f"Epoch {epoch}, MSE: {mse:.6f}, Avg Batch Loss: {avg_batch_loss:.6f}, Min Batch Loss: {np.min(epoch_losses):.6f}, Max Batch Loss: {max_batch_loss:.6f}")

            if mse < best_mse:
                best_mse = mse
                patience_counter = 0
            else:
                patience_counter += 1

            if patience_counter >= patience:
                print(f"Early stopping at epoch {epoch}")
                break

        return best_mse

    def apply_fractals(self, x):
        fractal_outputs = []
        for i, layer in enumerate(self.layers):
            x = self.layer_outputs[i+1]
            fractal_output = layer.apply_fractal(x)
            fractal_outputs.append(fractal_output)
        return fractal_outputs

def sierpinski_fractal(input_data):
    t = np.linspace(0, 2 * np.pi, input_data.shape[0])
    x = np.mean(input_data) * np.cos(t)
    y = np.mean(input_data) * np.sin(t)
    return x, y

def mandelbrot_fractal(input_data, max_iter=10):
    output = np.zeros(input_data.shape[0])
    for i in range(input_data.shape[0]):
        c = input_data[i, 0] + 0.1j * np.std(input_data)
        z = 0
        for n in range(max_iter):
            if abs(z) > 2:
                output[i] = n
                break
            z = z*z + c
        else:
            output[i] = max_iter
    return output

def julia_fractal(input_data, max_iter=10):
    output = np.zeros(input_data.shape[0])
    c = -0.8 + 0.156j
    for i in range(input_data.shape[0]):
        z = input_data[i, 0] + 0.1j * np.std(input_data)
        for n in range(max_iter):
            if abs(z) > 2:
                output[i] = n
                break
            z = z*z + c
        else:
            output[i] = max_iter
    return output

def run_snn(epochs, batch_size, l2_lambda, patience):
    np.random.seed(42)

    X = np.linspace(0, 10, 1000).reshape(-1, 1)
    y = np.sin(X).reshape(-1, 1)

    X = (X - X.min()) / (X.max() - X.min())
    y = (y - y.min()) / (y.max() - y.min())

    snn = SwarmNeuralNetwork(layer_sizes=[1, 32, 16, 8, 1],
                             fractal_methods=[sierpinski_fractal, mandelbrot_fractal, julia_fractal, julia_fractal])

    snn.train(X, y, epochs=epochs, batch_size=batch_size, l2_lambda=l2_lambda, patience=patience)

    y_pred = snn.forward(X, training=False)
    fractal_outputs = snn.apply_fractals(X)

    fig, axs = plt.subplots(2, 2, figsize=(15, 10))
    
    axs[0, 0].plot(X, y, label='True')
    axs[0, 0].plot(X, y_pred, label='Predicted')
    axs[0, 0].legend()
    axs[0, 0].set_title('True vs Predicted')
    
    x, y = fractal_outputs[0]
    axs[0, 1].plot(x, y)
    axs[0, 1].set_title('Sierpinski Fractal Output')
    
    axs[1, 0].plot(X, fractal_outputs[1])
    axs[1, 0].set_title('Mandelbrot Fractal Output')
    
    axs[1, 1].plot(X, fractal_outputs[2])
    axs[1, 1].set_title('Julia Fractal Output')

    plt.tight_layout()
    return fig

with gr.Blocks() as demo:
    epochs = gr.Slider(1, 10000, value=5000, label="Epochs")
    batch_size = gr.Slider(1, 100, value=32, label="Batch Size")
    l2_lambda = gr.Slider(0.0001, 0.1, value=0.00001, label="L2 Lambda")
    patience = gr.Slider(1, 1000, value=50, label="Patience")

    plot = gr.Plot()

    def update_plot(epochs, batch_size, l2_lambda, patience):
        return run_snn(epochs, batch_size, l2_lambda, patience)

    btn = gr.Button("Run SNN")
    btn.click(update_plot, inputs=[epochs, batch_size, l2_lambda, patience], outputs=plot)

demo.launch()