TuringsSolutions commited on
Commit
b694338
·
verified ·
1 Parent(s): 2f22c4c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -8
app.py CHANGED
@@ -57,14 +57,14 @@ def generate_synthetic_math_problems(num_problems):
57
  return problems
58
 
59
  @spaces.GPU(duration=60)
60
- def solve_problem(problem):
61
  print(f"Solving problem: {problem}")
62
  with torch.no_grad():
63
  # Encode the problem
64
  inputs = tokenizer(problem, return_tensors="pt").to(device)
65
 
66
  # Generate a response from the model
67
- outputs = model.generate(inputs["input_ids"], max_length=50, num_return_sequences=1, do_sample=True)
68
 
69
  # Decode the response
70
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
@@ -79,12 +79,12 @@ def solve_problem(problem):
79
  return answer
80
 
81
  @spaces.GPU(duration=120)
82
- def generate_and_solve_problems(num_problems):
83
  problems = generate_synthetic_math_problems(num_problems)
84
  solved_problems = []
85
 
86
  for problem in problems:
87
- answer = solve_problem(problem)
88
  solved_problems.append({
89
  "problem": problem,
90
  "answer": answer
@@ -92,15 +92,18 @@ def generate_and_solve_problems(num_problems):
92
 
93
  return solved_problems
94
 
95
- def gradio_interface(num_problems):
96
- print(f"Generating and solving {num_problems} problems...")
97
- solved_problems = generate_and_solve_problems(num_problems)
98
  return json.dumps(solved_problems, indent=4)
99
 
100
  # Create a Gradio interface
101
  iface = gr.Interface(
102
  fn=gradio_interface,
103
- inputs=gr.Number(label="Number of Problems", value=10, precision=0),
 
 
 
104
  outputs=gr.Textbox(label="Generated and Solved Problems"),
105
  title="Synthetic Math Problem Generator and Solver",
106
  description="Generate and solve synthetic math problems using a HuggingFace model."
 
57
  return problems
58
 
59
  @spaces.GPU(duration=60)
60
+ def solve_problem(problem, max_length):
61
  print(f"Solving problem: {problem}")
62
  with torch.no_grad():
63
  # Encode the problem
64
  inputs = tokenizer(problem, return_tensors="pt").to(device)
65
 
66
  # Generate a response from the model
67
+ outputs = model.generate(inputs["input_ids"], max_length=max_length, num_return_sequences=1, do_sample=True)
68
 
69
  # Decode the response
70
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
79
  return answer
80
 
81
  @spaces.GPU(duration=120)
82
+ def generate_and_solve_problems(num_problems, max_length):
83
  problems = generate_synthetic_math_problems(num_problems)
84
  solved_problems = []
85
 
86
  for problem in problems:
87
+ answer = solve_problem(problem, max_length)
88
  solved_problems.append({
89
  "problem": problem,
90
  "answer": answer
 
92
 
93
  return solved_problems
94
 
95
+ def gradio_interface(num_problems, max_length):
96
+ print(f"Generating and solving {num_problems} problems with max length {max_length}...")
97
+ solved_problems = generate_and_solve_problems(num_problems, max_length)
98
  return json.dumps(solved_problems, indent=4)
99
 
100
  # Create a Gradio interface
101
  iface = gr.Interface(
102
  fn=gradio_interface,
103
+ inputs=[
104
+ gr.Number(label="Number of Problems", value=10, precision=0),
105
+ gr.Slider(label="Max Output Length", minimum=10, maximum=200, value=50)
106
+ ],
107
  outputs=gr.Textbox(label="Generated and Solved Problems"),
108
  title="Synthetic Math Problem Generator and Solver",
109
  description="Generate and solve synthetic math problems using a HuggingFace model."