TuringsSolutions's picture
Update app.py
4050244 verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the model once
model_name = "HuggingFaceTB/SmolLM-1.7B"
model = AutoModelForCausalLM.from_pretrained(model_name)
# Define a list of five different tokenizers to use
tokenizer_names = [
"HuggingFaceTB/SmolLM-1.7B", # Model's default tokenizer
"gpt2", # GPT-2 tokenizer
"distilbert-base-uncased", # DistilBERT tokenizer
"bert-base-uncased", # BERT tokenizer
"roberta-base" # RoBERTa tokenizer
]
# Load all the tokenizers
tokenizers = {name: AutoTokenizer.from_pretrained(name) for name in tokenizer_names}
def generate_responses(prompt, selected_tokenizers):
responses = {}
for name in selected_tokenizers:
tokenizer = tokenizers.get(name)
if tokenizer:
try:
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
responses[name] = response
except Exception as e:
responses[name] = f"Error: {str(e)}"
return responses
# Gradio interface setup with checkboxes for tokenizers
interface = gr.Interface(
fn=generate_responses,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
gr.CheckboxGroup(choices=tokenizer_names, label="Select tokenizers to use")
],
outputs=gr.JSON(),
title="Tokenizer Comparison",
description="Compare model outputs with different tokenizers"
)
# Launch the Gradio interface
interface.launch()