Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# Load the model once
|
5 |
+
model_name = "HuggingFaceTB/SmolLM-1.7B"
|
6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
7 |
+
|
8 |
+
# Define a list of five different tokenizers to use
|
9 |
+
tokenizer_names = [
|
10 |
+
"HuggingFaceTB/SmolLM-1.7B", # Model's default tokenizer
|
11 |
+
"gpt2", # GPT-2 tokenizer
|
12 |
+
"distilbert-base-uncased", # DistilBERT tokenizer
|
13 |
+
"bert-base-uncased", # BERT tokenizer
|
14 |
+
"roberta-base" # RoBERTa tokenizer
|
15 |
+
]
|
16 |
+
|
17 |
+
# Load all the tokenizers
|
18 |
+
tokenizers = {name: AutoTokenizer.from_pretrained(name) for name in tokenizer_names}
|
19 |
+
|
20 |
+
# Function to generate responses using different tokenizers
|
21 |
+
def generate_responses(prompt):
|
22 |
+
responses = {}
|
23 |
+
for name, tokenizer in tokenizers.items():
|
24 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
25 |
+
outputs = model.generate(**inputs)
|
26 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
+
responses[name] = response
|
28 |
+
return responses
|
29 |
+
|
30 |
+
# Gradio interface setup
|
31 |
+
interface = gr.Interface(
|
32 |
+
fn=generate_responses,
|
33 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
34 |
+
outputs=gr.outputs.JSON(),
|
35 |
+
title="Tokenizer Comparison",
|
36 |
+
description="Compare model outputs with different tokenizers"
|
37 |
+
)
|
38 |
+
|
39 |
+
# Launch the Gradio interface
|
40 |
+
interface.launch()
|