import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM # Load the model once model_name = "HuggingFaceTB/SmolLM-1.7B" model = AutoModelForCausalLM.from_pretrained(model_name) # Define a list of five different tokenizers to use tokenizer_names = [ "HuggingFaceTB/SmolLM-1.7B", # Model's default tokenizer "gpt2", # GPT-2 tokenizer "distilbert-base-uncased", # DistilBERT tokenizer "bert-base-uncased", # BERT tokenizer "roberta-base" # RoBERTa tokenizer ] # Load all the tokenizers tokenizers = {name: AutoTokenizer.from_pretrained(name) for name in tokenizer_names} # Function to generate responses using different tokenizers def generate_responses(prompt): responses = {} for name, tokenizer in tokenizers.items(): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) responses[name] = response return responses # Gradio interface setup interface = gr.Interface( fn=generate_responses, inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."), outputs=gr.outputs.JSON(), title="Tokenizer Comparison", description="Compare model outputs with different tokenizers" ) # Launch the Gradio interface interface.launch()