TuringsSolutions commited on
Commit
b38976a
·
verified ·
1 Parent(s): 0bdadb9

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -484
app.py DELETED
@@ -1,484 +0,0 @@
1
- # ==============================================================================
2
- # Tool World: Advanced Prototype (Hugging Face Space Version)
3
- # ==============================================================================
4
- #
5
- # This script has been updated to run as a Hugging Face Space.
6
- #
7
- # Key Upgrades from the original script:
8
- # 1. **Hugging Face Model Integration**: Uses the 'google/gemma-3n-E4B' model
9
- # from the Hugging Face Hub for argument extraction.
10
- # 2. **Environment Variable Management**: Securely accesses the
11
- # HUGGING_FACE_HUB_TOKEN using os.environ.get(), which is the standard
12
- # for Hugging Face Spaces.
13
- # 3. **Standard Dependencies**: All dependencies are managed via a
14
- # `requirements.txt` file.
15
- #
16
- # ==============================================================================
17
-
18
- # ------------------------------
19
- # 1. INSTALL & IMPORT PACKAGES
20
- # ------------------------------
21
- import numpy as np
22
- import umap
23
- import gradio as gr
24
- from sentence_transformers import SentenceTransformer, util
25
- import matplotlib.pyplot as plt
26
- import json
27
- import os
28
- from datetime import datetime, timedelta
29
- import torch
30
- from transformers import AutoTokenizer, AutoModelForCausalLM
31
-
32
- # ------------------------------
33
- # 2. CONFIGURE & LOAD MODELS
34
- # ------------------------------
35
-
36
- print("⚙️ Loading embedding model...")
37
- # Using a powerful model for better semantic understanding
38
- embedder = SentenceTransformer('all-mpnet-base-v2')
39
- print("✅ Embedding model loaded.")
40
-
41
- # --- Configuration for Hugging Face Model-based Argument Extraction ---
42
- try:
43
- HF_TOKEN = os.environ.get('HUGGING_FACE_HUB_TOKEN')
44
- if HF_TOKEN is None:
45
- raise ValueError("HUGGING_FACE_HUB_TOKEN secret not found.")
46
-
47
- print("⚙️ Loading Hugging Face model for argument extraction...")
48
- # Using the user-specified Gemma 3n model
49
- model_id = "google/gemma-3n-E4B"
50
-
51
- hf_tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
52
- hf_model = AutoModelForCausalLM.from_pretrained(
53
- model_id,
54
- token=HF_TOKEN,
55
- torch_dtype=torch.bfloat16, # Use bfloat16 for efficiency
56
- device_map="auto" # Automatically use GPU if available
57
- )
58
- USE_HF_LLM = True
59
- print(f"✅ Successfully loaded '{model_id}' model.")
60
-
61
- except Exception as e:
62
- USE_HF_LLM = False
63
- print(f"⚠️ WARNING: Could not load the Hugging Face model. Reason: {e}")
64
- print(" Argument extraction will be disabled.")
65
-
66
-
67
- # ------------------------------
68
- # 3. ADVANCED TOOL DEFINITION
69
- # ------------------------------
70
-
71
- class Tool:
72
- """
73
- Represents a tool with structured arguments and rich descriptive data
74
- for high-quality embedding.
75
- """
76
- def __init__(self, name, description, args_schema, function, examples=None):
77
- self.name = name
78
- self.description = description
79
- self.args_schema = args_schema
80
- self.function = function
81
- self.examples = examples or []
82
- self.embedding = self._create_embedding()
83
-
84
- def _create_embedding(self):
85
- """
86
- Creates a rich embedding by combining the tool's name, description,
87
- argument structure, and examples.
88
- """
89
- schema_str = json.dumps(self.args_schema, indent=2)
90
- examples_str = "\n".join([f" - Example: {ex['prompt']} -> Args: {json.dumps(ex['args'])}" for ex in self.examples])
91
-
92
- embedding_text = (
93
- f"Tool Name: {self.name}\n"
94
- f"Description: {self.description}\n"
95
- f"Argument Schema: {schema_str}\n"
96
- f"Usage Examples:\n{examples_str}"
97
- )
98
- return embedder.encode(embedding_text, convert_to_tensor=True)
99
-
100
- def __repr__(self):
101
- return f"<Tool: {self.name}>"
102
-
103
- # ------------------------------
104
- # 4. TOOL IMPLEMENTATIONS
105
- # ------------------------------
106
-
107
- def get_weather_forecast(location: str, days: int = 1):
108
- """Simulates fetching a weather forecast."""
109
- if not isinstance(location, str) or not isinstance(days, int):
110
- return {"error": "Invalid argument types. 'location' must be a string and 'days' an integer."}
111
-
112
- weather_conditions = ["Sunny", "Cloudy", "Rainy", "Windy", "Snowy"]
113
- response = {"location": location, "forecast": []}
114
-
115
- for i in range(days):
116
- date = (datetime.now() + timedelta(days=i)).strftime('%Y-%m-%d')
117
- condition = np.random.choice(weather_conditions)
118
- temp = np.random.randint(5, 25)
119
- response["forecast"].append({
120
- "date": date,
121
- "condition": condition,
122
- "temperature_celsius": temp
123
- })
124
- return response
125
-
126
- def create_calendar_event(title: str, date: str, duration_minutes: int = 60, participants: list = None):
127
- """Simulates creating a calendar event."""
128
- try:
129
- event_time = datetime.strptime(date, '%Y-%m-%d %H:%M')
130
- return {
131
- "status": "success",
132
- "event_created": {
133
- "title": title,
134
- "start_time": event_time.isoformat(),
135
- "end_time": (event_time + timedelta(minutes=duration_minutes)).isoformat(),
136
- "participants": participants or ["organizer"]
137
- }
138
- }
139
- except ValueError:
140
- return {"error": "Invalid date format. Please use 'YYYY-MM-DD HH:MM'."}
141
-
142
- def summarize_text(text: str, compression_level: str = 'medium'):
143
- """Summarizes a given text based on a compression level."""
144
- word_count = len(text.split())
145
- ratios = {'high': 0.2, 'medium': 0.4, 'low': 0.7}
146
- ratio = ratios.get(compression_level, 0.4)
147
- summary_length = int(word_count * ratio)
148
- summary = " ".join(text.split()[:summary_length])
149
- return {"summary": summary + "...", "original_word_count": word_count, "summary_word_count": summary_length}
150
-
151
- def search_web(query: str, domain: str = None):
152
- """Simulates a web search, with an optional domain filter."""
153
- results = [
154
- f"Simulated result 1 for '{query}'",
155
- f"Simulated result 2 for '{query}'",
156
- f"Simulated result 3 for '{query}'"
157
- ]
158
- if domain:
159
- return {"status": f"Searching for '{query}' within '{domain}'...", "results": results}
160
- return {"status": f"Searching for '{query}'...", "results": results}
161
-
162
-
163
- # ------------------------------
164
- # 5. DEFINE THE TOOLSET
165
- # ------------------------------
166
-
167
- tools = [
168
- Tool(
169
- name="weather_reporter",
170
- description="Provides the weather forecast for a specific location for a given number of days.",
171
- args_schema={
172
- "type": "object",
173
- "properties": {
174
- "location": {"type": "string", "description": "The city and state, e.g., 'San Francisco, CA'"},
175
- "days": {"type": "integer", "description": "The number of days to forecast", "default": 1}
176
- },
177
- "required": ["location"]
178
- },
179
- function=get_weather_forecast,
180
- examples=[
181
- {"prompt": "what's the weather like in London for the next 3 days", "args": {"location": "London", "days": 3}},
182
- {"prompt": "forecast for New York tomorrow", "args": {"location": "New York", "days": 1}}
183
- ]
184
- ),
185
- Tool(
186
- name="calendar_creator",
187
- description="Creates a new event in the user's calendar.",
188
- args_schema={
189
- "type": "object",
190
- "properties": {
191
- "title": {"type": "string", "description": "The title of the calendar event"},
192
- "date": {"type": "string", "description": "The start date and time in 'YYYY-MM-DD HH:MM' format"},
193
- "duration_minutes": {"type": "integer", "description": "The duration of the event in minutes", "default": 60},
194
- "participants": {"type": "array", "items": {"type": "string"}, "description": "List of email addresses of participants"}
195
- },
196
- "required": ["title", "date"]
197
- },
198
- function=create_calendar_event,
199
- examples=[
200
- {"prompt": "Schedule a 'Project Sync' for tomorrow at 3pm with [email protected]", "args": {"title": "Project Sync", "date": (datetime.now() + timedelta(days=1)).strftime('%Y-%m-%d 15:00'), "participants": ["[email protected]"]}},
201
- {"prompt": "new event: Dentist appointment on 2025-12-20 at 10:00 for 45 mins", "args": {"title": "Dentist appointment", "date": "2025-12-20 10:00", "duration_minutes": 45}}
202
- ]
203
- ),
204
- Tool(
205
- name="text_summarizer",
206
- description="Summarizes a long piece of text. Can be set to high, medium, or low compression.",
207
- args_schema={
208
- "type": "object",
209
- "properties": {
210
- "text": {"type": "string", "description": "The text to be summarized."},
211
- "compression_level": {"type": "string", "enum": ["high", "medium", "low"], "description": "The level of summarization.", "default": "medium"}
212
- },
213
- "required": ["text"]
214
- },
215
- function=summarize_text,
216
- examples=[
217
- {"prompt": "summarize this article for me, make it very short: [long text...]", "args": {"text": "[long text...]", "compression_level": "high"}}
218
- ]
219
- ),
220
- Tool(
221
- name="web_search",
222
- description="Performs a web search to find information on a topic.",
223
- args_schema={
224
- "type": "object",
225
- "properties": {
226
- "query": {"type": "string", "description": "The search query."},
227
- "domain": {"type": "string", "description": "Optional: a specific website domain to search within (e.g., 'wikipedia.org')."}
228
- },
229
- "required": ["query"]
230
- },
231
- function=search_web,
232
- examples=[
233
- {"prompt": "who invented the light bulb", "args": {"query": "who invented the light bulb"}},
234
- {"prompt": "search for 'transformer models' on arxiv.org", "args": {"query": "transformer models", "domain": "arxiv.org"}}
235
- ]
236
- )
237
- ]
238
-
239
- print(f"✅ {len(tools)} tools defined and embedded.")
240
-
241
- # ------------------------------
242
- # 6. CORE LOGIC: TOOL SELECTION & ARGUMENT EXTRACTION
243
- # ------------------------------
244
-
245
- def find_best_tool(user_intent: str):
246
- """Finds the most semantically similar tool for a user's intent."""
247
- intent_embedding = embedder.encode(user_intent, convert_to_tensor=True)
248
- # Move tool embeddings to the same device as the intent embedding
249
- tool_embeddings = [tool.embedding.to(intent_embedding.device) for tool in tools]
250
- similarities = [util.pytorch_cos_sim(intent_embedding, tool_emb).item() for tool_emb in tool_embeddings]
251
- best_index = int(np.argmax(similarities))
252
- best_tool = tools[best_index]
253
- best_score = similarities[best_index]
254
- return best_tool, best_score, similarities
255
-
256
- def extract_arguments_hf(user_prompt: str, tool: Tool):
257
- """
258
- Uses a local Hugging Face model to extract structured arguments.
259
- """
260
- system_prompt = f"""
261
- You are an expert at extracting structured data from natural language.
262
- Your task is to analyze the user's prompt and extract the arguments required to call the tool: '{tool.name}'.
263
-
264
- You must adhere to the following JSON schema for the arguments:
265
- {json.dumps(tool.args_schema, indent=2)}
266
-
267
- - If a value is not present in the prompt for a non-required field, omit it from the JSON.
268
- - If a required value is missing, return a JSON object with an "error" key explaining what is missing.
269
- - Today's date is {datetime.now().strftime('%Y-%m-%d')}.
270
- - Respond ONLY with a valid JSON object. Do not include any other text, explanation, or markdown code blocks.
271
- """
272
-
273
- # Gemma instruction-following format
274
- chat = [
275
- {"role": "user", "content": f"{system_prompt}\n\nUser Prompt: \"{user_prompt}\""},
276
- ]
277
-
278
- prompt = hf_tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
279
-
280
- try:
281
- inputs = hf_tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(hf_model.device)
282
-
283
- # Generate with the model
284
- outputs = hf_model.generate(input_ids=inputs, max_new_tokens=256, do_sample=False)
285
- decoded_output = hf_tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
286
-
287
- # Clean the response to find the JSON object
288
- json_str = decoded_output.strip()
289
-
290
- # Find the first '{' and the last '}' to get the JSON part
291
- json_start = json_str.find('{')
292
- json_end = json_str.rfind('}')
293
-
294
- if json_start != -1 and json_end != -1:
295
- json_str = json_str[json_start : json_end + 1]
296
- return json.loads(json_str)
297
- else:
298
- raise json.JSONDecodeError("No JSON object found in the model output.", json_str, 0)
299
-
300
- except Exception as e:
301
- print(f"Error during HF model inference or JSON parsing: {e}")
302
- return {"error": f"Failed to extract arguments with the local LLM. Details: {str(e)}"}
303
-
304
- def execute_tool(user_prompt: str):
305
- """The main pipeline: Find tool, extract args, execute."""
306
- selected_tool, score, _ = find_best_tool(user_prompt)
307
-
308
- if USE_HF_LLM:
309
- print(f"⚙️ Selected Tool: {selected_tool.name}. Extracting arguments with Gemma...")
310
- extracted_args = extract_arguments_hf(user_prompt, selected_tool)
311
- else:
312
- # Fallback if the model failed to load
313
- extracted_args = {"error": "Argument extraction is disabled because the Hugging Face model could not be loaded."}
314
-
315
- if 'error' in extracted_args:
316
- print(f"❌ Argument extraction failed: {extracted_args['error']}")
317
- # Ensure the final output string is valid JSON
318
- final_output_str = json.dumps({
319
- "error": "Execution failed during argument extraction.",
320
- "details": extracted_args['error']
321
- })
322
- return (
323
- user_prompt,
324
- selected_tool.name,
325
- f"{score:.3f}",
326
- json.dumps(extracted_args, indent=2),
327
- final_output_str
328
- )
329
-
330
- print(f"✅ Arguments extracted: {json.dumps(extracted_args, indent=2)}")
331
-
332
- try:
333
- print(f"🚀 Executing tool function: {selected_tool.name}...")
334
- output = selected_tool.function(**extracted_args)
335
- print(f"✅ Execution complete.")
336
- output_str = json.dumps(output, indent=2)
337
- except Exception as e:
338
- print(f"❌ Tool execution failed: {e}")
339
- output_str = f'{{"error": "Tool execution failed", "details": "{str(e)}"}}'
340
-
341
- return (
342
- user_prompt,
343
- selected_tool.name,
344
- f"{score:.3f}",
345
- json.dumps(extracted_args, indent=2),
346
- output_str
347
- )
348
-
349
-
350
- # ------------------------------
351
- # 7. VISUALIZATION
352
- # ------------------------------
353
-
354
- def plot_tool_world(user_intent=None):
355
- """Generates a 2D UMAP plot of the tool latent space."""
356
- tool_vectors = [tool.embedding.cpu().numpy() for tool in tools]
357
- labels = [tool.name for tool in tools]
358
- all_vectors = tool_vectors
359
-
360
- if user_intent and user_intent.strip():
361
- intent_vector = embedder.encode(user_intent, convert_to_tensor=True).cpu().numpy()
362
- all_vectors.append(intent_vector)
363
- labels.append("Your Intent")
364
-
365
- # UMAP requires at least 2 neighbors
366
- n_neighbors = min(len(all_vectors) - 1, 5)
367
- if n_neighbors < 1:
368
- n_neighbors = 1
369
-
370
- reducer = umap.UMAP(n_neighbors=n_neighbors, min_dist=0.3, metric='cosine', random_state=42)
371
-
372
- # UMAP fit_transform requires at least 2 samples
373
- if len(all_vectors) < 2:
374
- # Create a dummy plot if there's not enough data
375
- fig, ax = plt.subplots(figsize=(10, 7))
376
- ax.text(0.5, 0.5, "Not enough data to create a plot.", ha='center', va='center')
377
- return fig
378
-
379
- reduced_vectors = reducer.fit_transform(all_vectors)
380
-
381
- plt.style.use('seaborn-v0_8-whitegrid')
382
- fig, ax = plt.subplots(figsize=(10, 7))
383
-
384
- for i, label in enumerate(labels):
385
- x, y = reduced_vectors[i]
386
- if label == "Your Intent":
387
- ax.scatter(x, y, color='red', s=150, zorder=5, label=label, marker='*')
388
- ax.text(x, y + 0.05, label, fontsize=12, ha='center', color='red', weight='bold')
389
- else:
390
- ax.scatter(x, y, s=100, alpha=0.8, label=label)
391
- ax.text(x, y + 0.05, label, fontsize=10, ha='center')
392
-
393
- ax.set_title("Tool World: Latent Space Map", fontsize=16)
394
- ax.set_xlabel("UMAP Dimension 1", fontsize=12)
395
- ax.set_ylabel("UMAP Dimension 2", fontsize=12)
396
- ax.grid(True)
397
-
398
- handles, labels_legend = ax.get_legend_handles_labels()
399
- by_label = dict(zip(labels_legend, handles))
400
- ax.legend(by_label.values(), by_label.keys())
401
-
402
- plt.tight_layout()
403
- return fig
404
-
405
-
406
- # ------------------------------
407
- # 8. GRADIO INTERFACE
408
- # ------------------------------
409
-
410
- print("🚀 Launching Gradio interface...")
411
-
412
- with gr.Blocks(theme=gr.themes.Soft()) as demo:
413
- gr.Markdown("# 🛠️ Tool World: Advanced Prototype (Hugging Face Version)")
414
- gr.Markdown(
415
- "Enter a natural language command. The system will select the best tool, "
416
- "extract structured arguments with **google/gemma-3n-E4B**, and execute it."
417
- )
418
-
419
- with gr.Row():
420
- with gr.Column(scale=1):
421
- inp = gr.Textbox(
422
- label="Your Intent",
423
- placeholder="e.g., What's the weather in Paris for 2 days?",
424
- lines=3
425
- )
426
- run_btn = gr.Button("Invoke Tool", variant="primary")
427
-
428
- gr.Markdown("---")
429
- gr.Markdown("### Examples")
430
- gr.Examples(
431
- examples=[
432
- "Schedule a 'Team Meeting' for tomorrow at 10:30 am",
433
- "What is the weather forecast in Tokyo for the next 5 days?",
434
- "search for the latest news on generative AI on reuters.com",
435
- "Please give me a very short summary of this text: The Industrial Revolution was the transition to new manufacturing processes in Europe and the United States, in the period from about 1760 to sometime between 1820 and 1840."
436
- ],
437
- inputs=inp
438
- )
439
-
440
- with gr.Column(scale=2):
441
- gr.Markdown("### Invocation Details")
442
- with gr.Row():
443
- out_tool = gr.Textbox(label="Selected Tool", interactive=False)
444
- out_score = gr.Textbox(label="Similarity Score", interactive=False)
445
-
446
- out_args = gr.JSON(label="Extracted Arguments")
447
- out_result = gr.JSON(label="Tool Execution Output")
448
-
449
- with gr.Row():
450
- gr.Markdown("---")
451
- gr.Markdown("### Latent Space Visualization")
452
- plot_output = gr.Plot(label="Tool World Map")
453
-
454
- def process_and_plot(user_prompt):
455
- if not user_prompt or not user_prompt.strip():
456
- # Return empty state and the default plot
457
- return "", "", {}, {}, plot_tool_world()
458
-
459
- prompt, tool_name, score, args_json, result_json = execute_tool(user_prompt)
460
- fig = plot_tool_world(user_prompt)
461
-
462
- # Safely load JSON strings into objects for the UI
463
- try:
464
- args_obj = json.loads(args_json)
465
- except (json.JSONDecodeError, TypeError):
466
- args_obj = {"error": "Invalid JSON in arguments", "raw": args_json}
467
-
468
- try:
469
- result_obj = json.loads(result_json)
470
- except (json.JSONDecodeError, TypeError):
471
- result_obj = {"error": "Invalid JSON in result", "raw": result_json}
472
-
473
- return tool_name, score, args_obj, result_obj, fig
474
-
475
- run_btn.click(
476
- fn=process_and_plot,
477
- inputs=inp,
478
- outputs=[out_tool, out_score, out_args, out_result, plot_output]
479
- )
480
-
481
- # Load the initial plot when the app starts
482
- demo.load(fn=lambda: plot_tool_world(None), inputs=None, outputs=plot_output)
483
-
484
- demo.launch()