Spaces:
Sleeping
Sleeping
File size: 28,103 Bytes
30d7ae2 19e1ed6 0cfd18e 26c97a9 0cfd18e d559082 0cfd18e 19e1ed6 0cfd18e 139f757 0cfd18e 26c97a9 30d7ae2 fd09ea6 30d7ae2 139f757 d559082 fd09ea6 139f757 fd09ea6 139f757 fd09ea6 d559082 fd09ea6 139f757 fd09ea6 139f757 30d7ae2 fd09ea6 30d7ae2 fd09ea6 30d7ae2 fd09ea6 d559082 0cfd18e fd09ea6 d559082 fd09ea6 0cfd18e fd09ea6 d559082 fd09ea6 139f757 d559082 0cfd18e 30d7ae2 fd09ea6 139f757 30d7ae2 d559082 30d7ae2 d559082 30d7ae2 fd09ea6 0cfd18e d559082 fd09ea6 d559082 fd09ea6 d559082 fd09ea6 d559082 fd09ea6 d559082 fd09ea6 d559082 30d7ae2 fd09ea6 26c97a9 fd09ea6 30d7ae2 fd09ea6 30d7ae2 fd09ea6 26c97a9 fd09ea6 30d7ae2 f38c379 fd09ea6 f38c379 fd09ea6 30d7ae2 f38c379 fd09ea6 f38c379 30d7ae2 fd09ea6 30d7ae2 fd09ea6 30d7ae2 fd09ea6 30d7ae2 fd09ea6 f38c379 fd09ea6 30d7ae2 fd09ea6 30d7ae2 fd09ea6 30d7ae2 fd09ea6 30d7ae2 fd09ea6 30d7ae2 fd09ea6 30d7ae2 fd09ea6 30d7ae2 fd09ea6 30d7ae2 fd09ea6 30d7ae2 fd09ea6 30d7ae2 fd09ea6 30d7ae2 0cfd18e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
import os
import torch
import glob
import gc
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling,
AutoTokenizer,
LlamaConfig,
AutoConfig
)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
from datasets import Dataset
from huggingface_hub import snapshot_download
from tqdm import tqdm
import gradio as gr
import math
from accelerate import Accelerator
import subprocess
import sys
import json
import shutil
# --- Configuration ---
YOUR_HF_USERNAME = "Twelve2five"
MODEL_REPO_NAME = "llama-3-8b-rvq-resized"
DATASET_REPO_NAME = "podcast-dialogue-rvq-pairs-3items"
hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}"
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}"
# Output directories
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run"
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run"
local_download_path = "./downloaded_dataset_files"
# Training parameters
NUM_EPOCHS = 1
BATCH_SIZE_PER_DEVICE = 1
GRAD_ACCUMULATION_STEPS = 64
LEARNING_RATE = 1e-4
WEIGHT_DECAY = 0.01
WARMUP_RATIO = 0.03
LR_SCHEDULER = "cosine"
OPTIMIZER = "paged_adamw_8bit"
MAX_SEQ_LENGTH = 256
MICRO_BATCH_SIZE = 1
# Multi-GPU configuration
accelerator = Accelerator()
# Configure environment for multi-GPU
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"
# Print GPU information
print(f"Available GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)} with {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB")
def seq2seq_causal_collator(features):
"""
Collator that concatenates context (input_ids) and target (labels)
for Causal LM sequence-to-sequence training.
Masks the loss for the context part of the sequence.
Pads sequences to the maximum length in the batch.
"""
batch = {}
concatenated_input_ids = []
concatenated_labels = []
max_len = 0
# --- First pass: Concatenate, create masked labels, find max length ---
for feature in features:
# Dataset transform should provide tensors here
input_ids = feature['input_ids']
labels = feature['labels']
# Ensure tensors are 1D (handle potential extra dims if any)
if input_ids.dim() > 1: input_ids = input_ids.squeeze()
if labels.dim() > 1: labels = labels.squeeze()
context_len = input_ids.shape[0]
target_len = labels.shape[0]
# Concatenate context and target for input
combined_ids = torch.cat([input_ids, labels], dim=0)
concatenated_input_ids.append(combined_ids)
# Create labels: -100 for context, actual labels for target
masked_labels = torch.cat([
torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
labels
], dim=0)
concatenated_labels.append(masked_labels)
# Track max length for padding
if combined_ids.shape[0] > max_len:
max_len = combined_ids.shape[0]
# --- Second pass: Pad to max length ---
padded_input_ids = []
padded_labels = []
input_pad_token_id = 0
label_pad_token_id = -100
for i in range(len(features)):
ids = concatenated_input_ids[i]
lbls = concatenated_labels[i]
padding_len = max_len - ids.shape[0]
# Pad on the right side
padded_input_ids.append(torch.nn.functional.pad(
ids, (0, padding_len), value=input_pad_token_id
))
padded_labels.append(torch.nn.functional.pad(
lbls, (0, padding_len), value=label_pad_token_id
))
# --- Stack and create final batch ---
batch['input_ids'] = torch.stack(padded_input_ids)
batch['labels'] = torch.stack(padded_labels)
# Create attention mask (1 for real tokens, 0 for padding)
batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()
return batch
def prepare_for_dataset(batch):
output = {'input_ids': [], 'labels': []}
for item in batch:
output['input_ids'].append(item['input_ids'].cpu().tolist())
output['labels'].append(item['labels'].cpu().tolist())
return output
def load_model():
print(f"Loading base model architecture from: {hf_model_repo_id}")
# Get information about GPU with most free memory
gpu_id = 0 # Default to first GPU
max_free_memory = 0
for i in range(torch.cuda.device_count()):
free_memory = torch.cuda.get_device_properties(i).total_memory - torch.cuda.memory_allocated(i)
if free_memory > max_free_memory:
max_free_memory = free_memory
gpu_id = i
print(f"Loading model on GPU {gpu_id} with {max_free_memory / 1e9:.2f}GB free memory")
# Configure quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load the model
try:
# First update transformers to make sure we have latest version
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "transformers"])
# Now try loading with explicit config class to avoid auto-detection issues
from transformers import LlamaConfig
# Load config first
config = LlamaConfig.from_pretrained(
hf_model_repo_id,
trust_remote_code=True
)
# Then load model with explicit config
model = AutoModelForCausalLM.from_pretrained(
hf_model_repo_id,
config=config,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
log.append(f"Loaded model vocab size: {model.config.vocab_size}")
log.append(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
except Exception as e:
error_msg = f"Error loading model from Hub: {e}"
log.append(error_msg)
# Try with a fallback method
try:
log.append("Attempting alternative loading method...")
# Try loading without auto detection
model = AutoModelForCausalLM.from_pretrained(
hf_model_repo_id,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
# Add these to help with the loading
revision="main",
low_cpu_mem_usage=True,
)
log.append("Alternative loading successful!")
log.append(f"Loaded model vocab size: {model.config.vocab_size}")
except Exception as e2:
log.append(f"Alternative loading also failed: {e2}")
return "\n".join(log)
# Load the official Meta tokenizer for LLaMA 3
tokenizer = AutoTokenizer.from_pretrained(
"meta-llama/Llama-3-8B", # Use the official Meta tokenizer
use_auth_token=os.environ.get("HF_TOKEN", None) # In case it's needed
)
if tokenizer is None:
# Fallback to another common foundation model tokenizer
print("Falling back to another tokenizer as Meta tokenizer requires auth token")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
print(f"Loaded tokenizer vocabulary size: {len(tokenizer)}")
# Print information about input embeddings
print(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
# Prepare model for k-bit training
model = prepare_model_for_kbit_training(model)
# Define LoRA configuration
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
],
lora_dropout=0.05,
bias="none",
task_type=TaskType.CAUSAL_LM
)
# Apply LoRA to model
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
return model, tokenizer # Return both model and tokenizer
def load_dataset():
# --- Download the dataset repository files ---
try:
os.makedirs(local_download_path, exist_ok=True)
downloaded_repo_root = snapshot_download(
repo_id=hf_dataset_repo_id,
repo_type="dataset",
local_dir=local_download_path,
local_dir_use_symlinks=False
)
print(f"Dataset repository content downloaded to: {downloaded_repo_root}")
except Exception as e:
print(f"Error downloading dataset: {e}")
return None
# --- Load .pt files into a Hugging Face Dataset object ---
pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
if not all_pair_files:
all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
if not all_pair_files:
print("No RVQ pair files found!")
return None
print(f"Found {len(all_pair_files)} RVQ pair files.")
# Load data from .pt files into memory
all_data_pairs = []
for file_path in tqdm(all_pair_files, desc="Loading pair files"):
try:
episode_pairs = torch.load(file_path, map_location='cpu')
all_data_pairs.extend(episode_pairs)
except Exception as e:
print(f"Warning: Could not load file {file_path}: {e}")
if not all_data_pairs:
return None
print(f"Loaded {len(all_data_pairs)} training pairs.")
# Convert to Hugging Face Dataset
chunk_size = 1000
processed_data = {'input_ids': [], 'labels': []}
for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data"):
batch = all_data_pairs[i:i + chunk_size]
prepared_batch = prepare_for_dataset(batch)
processed_data['input_ids'].extend(prepared_batch['input_ids'])
processed_data['labels'].extend(prepared_batch['labels'])
hf_dataset = Dataset.from_dict(processed_data)
# Transform to get tensors back
hf_dataset.set_transform(lambda batch: {
'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
})
# Cleanup
del all_data_pairs
del processed_data
gc.collect()
return hf_dataset
# Memory cleaning function
def clean_memory():
gc.collect()
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
with torch.cuda.device(f'cuda:{i}'):
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
def train_model(
hf_username,
model_repo_name,
dataset_repo_name,
epochs=1,
batch_size=1,
grad_accum_steps=16, # Increased from 8 to 16
learning_rate=1e-4,
progress=gr.Progress()
):
progress(0, desc="Setting up environment...")
log = []
# Aggressive memory cleanup
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Reset peak memory stats
torch.cuda.reset_peak_memory_stats()
# Clean up any existing model files to save space
if os.path.exists("./model_files"):
try:
shutil.rmtree("./model_files")
except Exception as e:
log.append(f"Warning: Could not remove existing model files: {e}")
if os.path.exists("./downloaded_dataset_files"):
try:
shutil.rmtree("./downloaded_dataset_files")
except Exception as e:
log.append(f"Warning: Could not remove existing dataset files: {e}")
# Print GPU info
if torch.cuda.is_available():
log.append(f"Available GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
gpu_name = torch.cuda.get_device_name(i)
gpu_memory = torch.cuda.get_device_properties(i).total_memory / (1024**3)
log.append(f"GPU {i}: {gpu_name} with {gpu_memory:.2f} GB")
# Import required libraries
try:
from datasets import Dataset
from huggingface_hub import snapshot_download
import torch
import transformers
from transformers import AutoModelForCausalLM, LlamaConfig, LlamaForCausalLM
from transformers import BitsAndBytesConfig, TrainingArguments, Trainer, AutoTokenizer
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
log.append(f"Transformers version: {transformers.__version__}")
log.append(f"PyTorch version: {torch.__version__}")
except ImportError as e:
log.append(f"Error importing libraries: {e}")
return "\n".join(log)
# --- Configuration ---
progress(0.05, desc="Setting up configuration...")
hf_model_repo_id = f"{hf_username}/{model_repo_name}"
hf_dataset_repo_id = f"{hf_username}/{dataset_repo_name}"
log.append(f"Model repo: {hf_model_repo_id}")
log.append(f"Dataset repo: {hf_dataset_repo_id}")
# Check if running on multiple GPUs
n_gpus = torch.cuda.device_count()
log.append(f"Number of GPUs available: {n_gpus}")
# --- Load Base Model (with extreme quantization) ---
progress(0.1, desc="Loading base model...")
local_model_path = "./model_files"
try:
# Download the model files
snapshot_download(
repo_id=hf_model_repo_id,
local_dir=local_model_path,
local_dir_use_symlinks=False
)
log.append(f"Model files downloaded to {local_model_path}")
# Ensure model_type is set correctly in the config
config_path = os.path.join(local_model_path, "config.json")
with open(config_path, "r") as f:
config_data = json.load(f)
model_type = config_data.get("model_type", "")
log.append(f"Model architecture type: {model_type}")
# Force model_type to be "llama" if it's not already
if model_type != "llama":
config_data["model_type"] = "llama"
# Also ensure architectures is set correctly
config_data["architectures"] = ["LlamaForCausalLM"]
with open(config_path, "w") as f:
json.dump(config_data, f, indent=2)
log.append("Updated config.json to use llama model_type")
# Load the config first
config = LlamaConfig.from_pretrained(local_model_path)
log.append(f"Successfully loaded config: {config.model_type}")
# Use 4-bit quantization for extreme memory savings
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load tokenizer first (needed for dataset preparation)
tokenizer = AutoTokenizer.from_pretrained(local_model_path)
# Explicit device map to enable CPU offloading
max_memory = {0: "40GB", "cpu": "64GB"}
# Load the model with extreme memory optimization
model = LlamaForCausalLM.from_pretrained(
local_model_path,
config=config,
quantization_config=bnb_config,
device_map="auto",
max_memory=max_memory,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True
)
log.append(f"Loaded model vocab size: {model.config.vocab_size}")
log.append(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
except Exception as e:
error_msg = f"Error loading model: {str(e)}"
log.append(error_msg)
return "\n".join(log)
# --- Prepare for K-bit Training & Apply LoRA ---
progress(0.15, desc="Preparing model for fine-tuning...")
try:
model = prepare_model_for_kbit_training(model)
log.append("Model prepared for k-bit training")
# Use minimal LoRA configuration with fewer parameters
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=8, # Reduced from 16 to 8
lora_alpha=16, # Reduced from 32 to 16
lora_dropout=0.05,
bias="none",
# Target only key modules to reduce memory usage
target_modules=["q_proj", "v_proj"] # Reduced target modules
)
# Apply LoRA
peft_model = get_peft_model(model, lora_config)
model_to_train = peft_model
log.append("LoRA applied to model")
# Free memory
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception as e:
error_msg = f"Error preparing model for training: {str(e)}"
log.append(error_msg)
return "\n".join(log)
# --- Download and Process Dataset ---
progress(0.2, desc="Loading dataset...")
try:
# Download the dataset files
dataset_dir = os.path.join(os.getcwd(), "downloaded_dataset_files")
snapshot_download(
repo_id=hf_dataset_repo_id,
local_dir=dataset_dir,
local_dir_use_symlinks=False
)
log.append(f"Dataset repository content downloaded to: {dataset_dir}")
# Find all RVQ pair files
rvq_pair_files = glob.glob(os.path.join(dataset_dir, "*_rvq_pairs.pt"))
log.append(f"Found {len(rvq_pair_files)} RVQ pair files.")
# Load training pairs from the dataset
training_pairs = []
# For memory conservation, use only half the dataset for now
max_file_count = min(12, len(rvq_pair_files))
for i, pair_file in enumerate(rvq_pair_files[:max_file_count]):
try:
pairs = torch.load(pair_file)
training_pairs.extend(pairs)
except Exception as e:
log.append(f"Warning: Could not load {pair_file}: {e}")
log.append(f"Loaded a total of {len(training_pairs)} training pairs into memory.")
# Prepare dataset
dataset = Dataset.from_dict({
"input_ids": [pair[0].tolist() for pair in training_pairs],
"labels": [pair[1].tolist() for pair in training_pairs]
})
# Clear the training_pairs to free memory
training_pairs = None
gc.collect()
torch.cuda.empty_cache()
# Use a smaller max_length to reduce memory pressure
max_length = 512 # Reduced max sequence length
# Create data collator that handles padding
def data_collator(examples):
# Convert lists back to tensors
for i in range(len(examples)):
examples[i]["input_ids"] = torch.tensor(examples[i]["input_ids"], dtype=torch.long)
examples[i]["labels"] = torch.tensor(examples[i]["labels"], dtype=torch.long)
# Get max length in this batch
batch_max_length = min(
max(len(example["input_ids"]) for example in examples),
max_length
)
batch = {
"input_ids": [],
"attention_mask": [],
"labels": []
}
# Prepare sequences
for example in examples:
input_ids = example["input_ids"][:batch_max_length]
labels = example["labels"][:batch_max_length]
# Pad sequences
padding_length = batch_max_length - len(input_ids)
attention_mask = torch.ones_like(input_ids)
if padding_length > 0:
padding = torch.ones(padding_length, dtype=input_ids.dtype) * tokenizer.pad_token_id
input_ids = torch.cat([input_ids, padding])
labels = torch.cat([labels, padding * -100]) # -100 to ignore in loss computation
attention_mask = torch.cat([attention_mask, torch.zeros(padding_length, dtype=attention_mask.dtype)])
batch["input_ids"].append(input_ids)
batch["attention_mask"].append(attention_mask)
batch["labels"].append(labels)
# Convert lists to tensors
for key in batch:
batch[key] = torch.stack(batch[key])
return batch
# Convert to training dataset
train_dataset = dataset
# Free memory
del dataset
gc.collect()
torch.cuda.empty_cache()
except Exception as e:
error_msg = f"Error loading dataset: {str(e)}"
log.append(error_msg)
return "\n".join(log)
# --- Training Arguments ---
progress(0.3, desc="Setting up training arguments...")
output_dir = f"./results_{model_repo_name}"
os.makedirs(output_dir, exist_ok=True)
# Super-aggressive memory conservation
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=float(epochs),
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=grad_accum_steps,
learning_rate=learning_rate,
weight_decay=0.01,
logging_dir=f"{output_dir}/logs",
logging_steps=1, # Log frequently to see progress
save_steps=25, # Save checkpoints more frequently
save_total_limit=1, # Keep only one checkpoint to save space
remove_unused_columns=False,
push_to_hub=False,
disable_tqdm=False,
warmup_ratio=0.03,
lr_scheduler_type="cosine",
report_to="tensorboard",
bf16=True,
fp16=False,
# Memory optimization
gradient_checkpointing=True,
gradient_checkpointing_kwargs={'use_reentrant': False},
max_grad_norm=0.3, # Reduced from default 1.0
dataloader_pin_memory=False, # Reduce memory pressure
# Optimizer settings for memory efficiency
optim="adamw_torch",
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-8,
# Evaluation settings
do_eval=False,
evaluation_strategy="no",
# Set this for smaller chunks of data processing
dataloader_num_workers=1,
# For memory efficiency when loading datasets
dataloader_drop_last=True,
)
# --- Initialize Trainer ---
progress(0.4, desc="Initializing trainer...")
# Use optimizer that requires less memory
class MemoryEfficientTrainer(Trainer):
def create_optimizer(self):
# Create optimizer with reduced memory footprint
optimizer = super().create_optimizer()
# Force optimizer to use CPU offloading for states
for param_group in optimizer.param_groups:
for param in param_group['params']:
if param.requires_grad:
param.data = param.data.to("cpu")
if param.grad is not None:
param.grad.data = param.grad.data.to("cpu")
return optimizer
def training_step(self, *args, **kwargs):
# Memory cleanup before each training step
gc.collect()
torch.cuda.empty_cache()
return super().training_step(*args, **kwargs)
trainer = MemoryEfficientTrainer(
model=model_to_train,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
)
log.append("Trainer initialized with memory-efficient settings")
# --- Start Training ---
try:
# Final memory cleanup before training
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
progress(0.5, desc="Starting training...")
log.append("Starting training with extreme memory optimization...")
# Train in smaller chunks to manage memory better
total_steps = len(train_dataset) // (batch_size * grad_accum_steps)
log.append(f"Total training steps: {total_steps}")
# Train the model
train_result = trainer.train()
progress(0.95, desc="Saving model...")
# Save final model (adapter weights) and training state
final_save_path = os.path.join(training_args.output_dir, "final_checkpoint")
log.append(f"Saving final model checkpoint to {final_save_path}...")
trainer.save_model(final_save_path)
trainer.save_state()
# Log metrics
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
for key, value in metrics.items():
log.append(f"{key}: {value}")
# Print peak memory usage
if torch.cuda.is_available():
peak_memory = torch.cuda.max_memory_allocated() / (1024**3)
log.append(f"Peak GPU memory usage: {peak_memory:.2f} GB")
except Exception as e:
error_msg = f"An error occurred during training: {str(e)}"
log.append(error_msg)
# Try to save checkpoint even if training failed
try:
# Save whatever we have
log.append("Attempting to save partial checkpoint...")
emergency_save_path = os.path.join(training_args.output_dir, "emergency_checkpoint")
trainer.save_model(emergency_save_path)
log.append(f"Saved emergency checkpoint to {emergency_save_path}")
except Exception as save_error:
log.append(f"Could not save emergency checkpoint: {save_error}")
return "\n".join(log)
progress(1.0, desc="Training complete!")
log.append("Training process complete successfully.")
return "\n".join(log)
# Define the Gradio interface
def create_interface():
with gr.Blocks(title="Llama 3 8B RVQ Fine-tuning") as demo:
gr.Markdown("# Llama 3 8B RVQ LoRA Fine-tuning")
gr.Markdown("Fine-tune a Llama 3 8B model with RVQ token embeddings using LoRA with extreme memory optimization")
with gr.Row():
with gr.Column():
hf_username = gr.Textbox(label="HuggingFace Username", value="Twelve2five")
model_repo = gr.Textbox(label="Model Repository Name", value="llama-3-8b-rvq-resized")
dataset_repo = gr.Textbox(label="Dataset Repository Name", value="podcast-dialogue-rvq-pairs-3items")
with gr.Column():
epochs = gr.Number(label="Number of Epochs", value=1, minimum=1, maximum=10)
batch_size = gr.Number(label="Batch Size per Device", value=1, minimum=1, maximum=8)
grad_accum = gr.Number(label="Gradient Accumulation Steps", value=16, minimum=8, maximum=32)
lr = gr.Number(label="Learning Rate", value=1e-4)
start_btn = gr.Button("Start Training")
output = gr.Textbox(label="Training Log", lines=20)
start_btn.click(
fn=train_model,
inputs=[hf_username, model_repo, dataset_repo, epochs, batch_size, grad_accum, lr],
outputs=output
)
return demo
# Create and launch the interface
demo = create_interface()
if __name__ == "__main__":
demo.launch() |