Twelve2five's picture
Update app.py
139f757 verified
raw
history blame
30.7 kB
import os
import torch
import glob
import gc
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling,
AutoTokenizer,
LlamaConfig,
AutoConfig
)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
from datasets import Dataset
from huggingface_hub import snapshot_download
from tqdm import tqdm
import gradio as gr
import math
from accelerate import Accelerator
import subprocess
import sys
import json
import shutil
# --- Configuration ---
YOUR_HF_USERNAME = "Twelve2five"
MODEL_REPO_NAME = "llama-3-8b-rvq-resized"
DATASET_REPO_NAME = "podcast-dialogue-rvq-pairs-3items"
hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}"
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}"
# Output directories
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run"
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run"
local_download_path = "./downloaded_dataset_files"
# Training parameters
NUM_EPOCHS = 1
BATCH_SIZE_PER_DEVICE = 1
GRAD_ACCUMULATION_STEPS = 64
LEARNING_RATE = 1e-4
WEIGHT_DECAY = 0.01
WARMUP_RATIO = 0.03
LR_SCHEDULER = "cosine"
OPTIMIZER = "paged_adamw_8bit"
MAX_SEQ_LENGTH = 256
MICRO_BATCH_SIZE = 1
# Multi-GPU configuration
accelerator = Accelerator()
# Configure environment for multi-GPU
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"
# Print GPU information
print(f"Available GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)} with {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB")
def seq2seq_causal_collator(features):
"""
Collator that concatenates context (input_ids) and target (labels)
for Causal LM sequence-to-sequence training.
Masks the loss for the context part of the sequence.
Pads sequences to the maximum length in the batch.
"""
batch = {}
concatenated_input_ids = []
concatenated_labels = []
max_len = 0
# --- First pass: Concatenate, create masked labels, find max length ---
for feature in features:
# Dataset transform should provide tensors here
input_ids = feature['input_ids']
labels = feature['labels']
# Ensure tensors are 1D (handle potential extra dims if any)
if input_ids.dim() > 1: input_ids = input_ids.squeeze()
if labels.dim() > 1: labels = labels.squeeze()
context_len = input_ids.shape[0]
target_len = labels.shape[0]
# Concatenate context and target for input
combined_ids = torch.cat([input_ids, labels], dim=0)
concatenated_input_ids.append(combined_ids)
# Create labels: -100 for context, actual labels for target
masked_labels = torch.cat([
torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
labels
], dim=0)
concatenated_labels.append(masked_labels)
# Track max length for padding
if combined_ids.shape[0] > max_len:
max_len = combined_ids.shape[0]
# --- Second pass: Pad to max length ---
padded_input_ids = []
padded_labels = []
input_pad_token_id = 0
label_pad_token_id = -100
for i in range(len(features)):
ids = concatenated_input_ids[i]
lbls = concatenated_labels[i]
padding_len = max_len - ids.shape[0]
# Pad on the right side
padded_input_ids.append(torch.nn.functional.pad(
ids, (0, padding_len), value=input_pad_token_id
))
padded_labels.append(torch.nn.functional.pad(
lbls, (0, padding_len), value=label_pad_token_id
))
# --- Stack and create final batch ---
batch['input_ids'] = torch.stack(padded_input_ids)
batch['labels'] = torch.stack(padded_labels)
# Create attention mask (1 for real tokens, 0 for padding)
batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()
return batch
def prepare_for_dataset(batch):
output = {'input_ids': [], 'labels': []}
for item in batch:
output['input_ids'].append(item['input_ids'].cpu().tolist())
output['labels'].append(item['labels'].cpu().tolist())
return output
def load_model():
print(f"Loading base model architecture from: {hf_model_repo_id}")
# Get information about GPU with most free memory
gpu_id = 0 # Default to first GPU
max_free_memory = 0
for i in range(torch.cuda.device_count()):
free_memory = torch.cuda.get_device_properties(i).total_memory - torch.cuda.memory_allocated(i)
if free_memory > max_free_memory:
max_free_memory = free_memory
gpu_id = i
print(f"Loading model on GPU {gpu_id} with {max_free_memory / 1e9:.2f}GB free memory")
# Configure quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load the model
try:
# First update transformers to make sure we have latest version
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "transformers"])
# Now try loading with explicit config class to avoid auto-detection issues
from transformers import LlamaConfig
# Load config first
config = LlamaConfig.from_pretrained(
hf_model_repo_id,
trust_remote_code=True
)
# Then load model with explicit config
model = AutoModelForCausalLM.from_pretrained(
hf_model_repo_id,
config=config,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
log.append(f"Loaded model vocab size: {model.config.vocab_size}")
log.append(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
except Exception as e:
error_msg = f"Error loading model from Hub: {e}"
log.append(error_msg)
# Try with a fallback method
try:
log.append("Attempting alternative loading method...")
# Try loading without auto detection
model = AutoModelForCausalLM.from_pretrained(
hf_model_repo_id,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
# Add these to help with the loading
revision="main",
low_cpu_mem_usage=True,
)
log.append("Alternative loading successful!")
log.append(f"Loaded model vocab size: {model.config.vocab_size}")
except Exception as e2:
log.append(f"Alternative loading also failed: {e2}")
return "\n".join(log)
# Load the official Meta tokenizer for LLaMA 3
tokenizer = AutoTokenizer.from_pretrained(
"meta-llama/Llama-3-8B", # Use the official Meta tokenizer
use_auth_token=os.environ.get("HF_TOKEN", None) # In case it's needed
)
if tokenizer is None:
# Fallback to another common foundation model tokenizer
print("Falling back to another tokenizer as Meta tokenizer requires auth token")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
print(f"Loaded tokenizer vocabulary size: {len(tokenizer)}")
# Print information about input embeddings
print(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
# Prepare model for k-bit training
model = prepare_model_for_kbit_training(model)
# Define LoRA configuration
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
],
lora_dropout=0.05,
bias="none",
task_type=TaskType.CAUSAL_LM
)
# Apply LoRA to model
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
return model, tokenizer # Return both model and tokenizer
def load_dataset():
# --- Download the dataset repository files ---
try:
os.makedirs(local_download_path, exist_ok=True)
downloaded_repo_root = snapshot_download(
repo_id=hf_dataset_repo_id,
repo_type="dataset",
local_dir=local_download_path,
local_dir_use_symlinks=False
)
print(f"Dataset repository content downloaded to: {downloaded_repo_root}")
except Exception as e:
print(f"Error downloading dataset: {e}")
return None
# --- Load .pt files into a Hugging Face Dataset object ---
pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
if not all_pair_files:
all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
if not all_pair_files:
print("No RVQ pair files found!")
return None
print(f"Found {len(all_pair_files)} RVQ pair files.")
# Load data from .pt files into memory
all_data_pairs = []
for file_path in tqdm(all_pair_files, desc="Loading pair files"):
try:
episode_pairs = torch.load(file_path, map_location='cpu')
all_data_pairs.extend(episode_pairs)
except Exception as e:
print(f"Warning: Could not load file {file_path}: {e}")
if not all_data_pairs:
return None
print(f"Loaded {len(all_data_pairs)} training pairs.")
# Convert to Hugging Face Dataset
chunk_size = 1000
processed_data = {'input_ids': [], 'labels': []}
for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data"):
batch = all_data_pairs[i:i + chunk_size]
prepared_batch = prepare_for_dataset(batch)
processed_data['input_ids'].extend(prepared_batch['input_ids'])
processed_data['labels'].extend(prepared_batch['labels'])
hf_dataset = Dataset.from_dict(processed_data)
# Transform to get tensors back
hf_dataset.set_transform(lambda batch: {
'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
})
# Cleanup
del all_data_pairs
del processed_data
gc.collect()
return hf_dataset
# Memory cleaning function
def clean_memory():
gc.collect()
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
with torch.cuda.device(f'cuda:{i}'):
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
def train_model(
hf_username,
model_repo_name,
dataset_repo_name,
epochs=1,
batch_size=1,
grad_accum_steps=4,
learning_rate=1e-4,
progress=gr.Progress()
):
progress(0, desc="Setting up environment...")
log = []
# Completely clean up transformers installation
log.append("Completely reinstalling transformers and dependencies...")
# First uninstall any existing transformers
subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "-y", "transformers"])
# Clean any cached files that might be causing issues
cache_dirs = [
os.path.expanduser("~/.cache/huggingface"),
os.path.expanduser("~/.cache/pip")
]
for cache_dir in cache_dirs:
if os.path.exists(cache_dir):
log.append(f"Cleaning cache directory: {cache_dir}")
try:
shutil.rmtree(cache_dir)
except Exception as e:
log.append(f"Warning: Could not clean {cache_dir}: {e}")
# Install a stable version of transformers known to work with Llama models
subprocess.check_call([sys.executable, "-m", "pip", "install", "transformers==4.35.2", "sentencepiece"])
# Install other dependencies
subprocess.check_call([sys.executable, "-m", "pip", "install", "-q",
"accelerate", "bitsandbytes==0.41.1", "peft==0.6.1",
"datasets", "huggingface_hub", "deepspeed==0.12.3"])
# Now import everything after installation to ensure we use the correct versions
try:
from datasets import Dataset
from huggingface_hub import snapshot_download
import torch
import transformers
from transformers import AutoModelForCausalLM, LlamaConfig, LlamaForCausalLM
from transformers import BitsAndBytesConfig, TrainingArguments, Trainer
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
log.append(f"Transformers version: {transformers.__version__}")
log.append(f"PyTorch version: {torch.__version__}")
except ImportError as e:
log.append(f"Error importing libraries: {e}")
return "\n".join(log)
# --- Configuration ---
progress(0.05, desc="Setting up configuration...")
hf_model_repo_id = f"{hf_username}/{model_repo_name}"
hf_dataset_repo_id = f"{hf_username}/{dataset_repo_name}"
log.append(f"Model repo: {hf_model_repo_id}")
log.append(f"Dataset repo: {hf_dataset_repo_id}")
# Check if running on multiple GPUs
n_gpus = torch.cuda.device_count()
log.append(f"Number of GPUs available: {n_gpus}")
# --- Quantization Configuration ---
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
# --- Load Base Model (with quantization) ---
progress(0.1, desc="Loading base model...")
try:
# First try to download the repo without loading the model
local_model_path = "./model_files"
if os.path.exists(local_model_path):
shutil.rmtree(local_model_path) # Clean up any previous files
snapshot_download(
repo_id=hf_model_repo_id,
local_dir=local_model_path,
local_dir_use_symlinks=False
)
log.append(f"Model files downloaded to {local_model_path}")
# Check if this is a Llama model by looking at config.json
if os.path.exists(os.path.join(local_model_path, "config.json")):
with open(os.path.join(local_model_path, "config.json"), "r") as f:
config_data = json.load(f)
log.append(f"Model architecture type: {config_data.get('model_type', 'unknown')}")
# Force model_type to llama
config_data["model_type"] = "llama"
if "architectures" in config_data:
config_data["architectures"] = ["LlamaForCausalLM"]
with open(os.path.join(local_model_path, "config.json"), "w") as f:
json.dump(config_data, f)
log.append("Updated config.json to use llama model_type")
# Now try to load with explicit Llama classes
config = LlamaConfig.from_pretrained(
local_model_path,
trust_remote_code=False
)
log.append(f"Successfully loaded config: {config.model_type}")
# Load model with specific Llama class
model = LlamaForCausalLM.from_pretrained(
local_model_path,
config=config,
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True
)
log.append(f"Loaded model vocab size: {model.config.vocab_size}")
log.append(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
except Exception as e:
error_msg = f"Error loading model: {str(e)}"
log.append(error_msg)
# Try a fallback approach
try:
log.append("Trying fallback approach with AutoModelForCausalLM...")
model = AutoModelForCausalLM.from_pretrained(
local_model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True
)
log.append(f"Fallback model loaded successfully")
except Exception as e2:
log.append(f"Fallback approach also failed: {str(e2)}")
return "\n".join(log)
# --- Prepare for K-bit Training & Apply LoRA ---
progress(0.15, desc="Preparing model for fine-tuning...")
try:
model = prepare_model_for_kbit_training(model)
log.append("Model prepared for k-bit training")
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
)
peft_model = get_peft_model(model, lora_config)
trainable_params = peft_model.print_trainable_parameters()
log.append(f"LoRA applied to model")
model_to_train = peft_model
except Exception as e:
error_msg = f"Error preparing model for training: {str(e)}"
log.append(error_msg)
return "\n".join(log)
# Cleanup
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# --- Load Dataset from Hub ---
progress(0.2, desc="Downloading dataset...")
local_download_path = "./downloaded_dataset_files"
try:
downloaded_repo_root = snapshot_download(
repo_id=hf_dataset_repo_id,
repo_type="dataset",
local_dir=local_download_path,
local_dir_use_symlinks=False
)
log.append(f"Dataset repository content downloaded to: {downloaded_repo_root}")
except Exception as e:
error_msg = f"Error downloading dataset repository from Hub: {e}"
log.append(error_msg)
return "\n".join(log)
# --- Find and load the .pt files ---
progress(0.25, desc="Finding dataset files...")
pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
if not all_pair_files:
all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
if not all_pair_files:
error_msg = "No RVQ pair files found in expected directories"
log.append(error_msg)
return "\n".join(log)
log.append(f"Found {len(all_pair_files)} RVQ pair files.")
# --- Load data from .pt files ---
progress(0.3, desc="Loading dataset files...")
all_data_pairs = []
for i, file_path in enumerate(all_pair_files):
progress(0.3 + (0.1 * i / len(all_pair_files)), desc=f"Loading file {i+1}/{len(all_pair_files)}")
try:
episode_pairs = torch.load(file_path, map_location='cpu')
all_data_pairs.extend(episode_pairs)
except Exception as e:
log.append(f"Warning: Could not load file {file_path}: {e}")
if not all_data_pairs:
error_msg = "No valid data pairs were loaded"
log.append(error_msg)
return "\n".join(log)
log.append(f"Loaded a total of {len(all_data_pairs)} training pairs into memory.")
# --- Convert to HF Dataset ---
progress(0.45, desc="Converting to Hugging Face Dataset...")
def prepare_for_dataset(batch):
output = {'input_ids': [], 'labels': []}
for item in batch:
output['input_ids'].append(item['input_ids'].cpu().tolist())
output['labels'].append(item['labels'].cpu().tolist())
return output
chunk_size = 1000
processed_data = {'input_ids': [], 'labels': []}
total_chunks = len(range(0, len(all_data_pairs), chunk_size))
for i in range(0, len(all_data_pairs), chunk_size):
chunk_idx = i // chunk_size
progress(0.45 + (0.1 * chunk_idx / total_chunks),
desc=f"Processing chunk {chunk_idx+1}/{total_chunks}")
batch = all_data_pairs[i:i + chunk_size]
prepared_batch = prepare_for_dataset(batch)
processed_data['input_ids'].extend(prepared_batch['input_ids'])
processed_data['labels'].extend(prepared_batch['labels'])
hf_dataset = Dataset.from_dict(processed_data)
# Transform to get tensors back
hf_dataset.set_transform(lambda batch: {
'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
})
train_dataset = hf_dataset
# Cleanup
del all_data_pairs
del processed_data
gc.collect()
# --- Define Data Collator ---
progress(0.55, desc="Defining data collator...")
def seq2seq_causal_collator(features):
batch = {}
concatenated_input_ids = []
concatenated_labels = []
max_len = 0
# First pass: Concatenate, create masked labels, find max length
for feature in features:
input_ids = feature['input_ids']
labels = feature['labels']
if input_ids.dim() > 1: input_ids = input_ids.squeeze()
if labels.dim() > 1: labels = labels.squeeze()
context_len = input_ids.shape[0]
target_len = labels.shape[0]
combined_ids = torch.cat([input_ids, labels], dim=0)
concatenated_input_ids.append(combined_ids)
masked_labels = torch.cat([
torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
labels
], dim=0)
concatenated_labels.append(masked_labels)
if combined_ids.shape[0] > max_len:
max_len = combined_ids.shape[0]
# Second pass: Pad to max length
padded_input_ids = []
padded_labels = []
input_pad_token_id = 0
label_pad_token_id = -100
for i in range(len(features)):
ids = concatenated_input_ids[i]
lbls = concatenated_labels[i]
padding_len = max_len - ids.shape[0]
padded_input_ids.append(torch.nn.functional.pad(
ids, (0, padding_len), value=input_pad_token_id
))
padded_labels.append(torch.nn.functional.pad(
lbls, (0, padding_len), value=label_pad_token_id
))
# Stack and create final batch
batch['input_ids'] = torch.stack(padded_input_ids)
batch['labels'] = torch.stack(padded_labels)
batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()
return batch
data_collator = seq2seq_causal_collator
# --- Define Training Arguments and Initialize Trainer ---
progress(0.65, desc="Setting up training configuration...")
# Output directories
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run"
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run"
# Training parameters - adjusted for 4x T4 GPUs
NUM_EPOCHS = int(epochs)
BATCH_SIZE_PER_DEVICE = int(batch_size) # Smaller per-device batch size to avoid OOM
GRAD_ACCUMULATION_STEPS = int(grad_accum_steps)
LEARNING_RATE = float(learning_rate)
WEIGHT_DECAY = 0.01
WARMUP_RATIO = 0.03
LR_SCHEDULER = "cosine"
OPTIMIZER = "paged_adamw_8bit"
# Calculate total steps and warmup steps
# Total batch size is now batch_size × num_gpus × grad_accum_steps
total_train_batch_size = BATCH_SIZE_PER_DEVICE * n_gpus * GRAD_ACCUMULATION_STEPS
num_training_steps = math.ceil((len(train_dataset) * NUM_EPOCHS) / total_train_batch_size)
num_warmup_steps = int(num_training_steps * WARMUP_RATIO)
# Logging/Saving frequency
steps_per_epoch = math.ceil(len(train_dataset) / total_train_batch_size)
LOGGING_STEPS = max(10, steps_per_epoch // 15)
SAVE_STEPS = max(50, steps_per_epoch // 10)
log.append(f"Dataset size: {len(train_dataset)}")
log.append(f"Number of GPUs: {n_gpus}")
log.append(f"Batch size per device: {BATCH_SIZE_PER_DEVICE}")
log.append(f"Gradient Accumulation steps: {GRAD_ACCUMULATION_STEPS}")
log.append(f"Total train batch size (effective): {total_train_batch_size}")
log.append(f"Total optimization steps: {num_training_steps}")
log.append(f"Warmup steps: {num_warmup_steps}")
# --- Create DeepSpeed configuration file ---
progress(0.7, desc="Creating DeepSpeed configuration...")
# DeepSpeed ZeRO-3 config optimized for T4 GPUs
ds_config = {
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": True
},
"offload_param": {
"device": "cpu",
"pin_memory": True
},
"overlap_comm": True,
"contiguous_gradients": True,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"gather_16bit_weights_on_model_save": True,
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9
},
"gradient_accumulation_steps": GRAD_ACCUMULATION_STEPS,
"gradient_clipping": "auto",
"steps_per_print": 10,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": False
}
with open("ds_config.json", "w") as f:
json.dump(ds_config, f, indent=4)
# Configure for multi-GPU training using DeepSpeed
progress(0.75, desc="Setting up training arguments...")
training_args = TrainingArguments(
output_dir=OUTPUT_TRAINING_DIR,
num_train_epochs=NUM_EPOCHS,
per_device_train_batch_size=BATCH_SIZE_PER_DEVICE,
gradient_accumulation_steps=GRAD_ACCUMULATION_STEPS,
optim=OPTIMIZER,
logging_dir=LOGGING_DIR,
logging_strategy="steps",
logging_steps=LOGGING_STEPS,
save_strategy="steps",
save_steps=SAVE_STEPS,
save_total_limit=2,
learning_rate=LEARNING_RATE,
weight_decay=WEIGHT_DECAY,
warmup_steps=num_warmup_steps,
lr_scheduler_type=LR_SCHEDULER,
report_to="tensorboard",
bf16=True if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else False,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={'use_reentrant': False},
# Multi-GPU specific settings
deepspeed="ds_config.json",
ddp_find_unused_parameters=False,
)
# --- Initialize Trainer ---
progress(0.8, desc="Initializing trainer...")
trainer = Trainer(
model=model_to_train,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
)
log.append("Trainer initialized with DeepSpeed for multi-GPU training.")
# --- Start Training ---
# Clear cache before starting
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
try:
progress(0.85, desc="Starting training...")
log.append("Starting distributed training on multiple GPUs...")
train_result = trainer.train()
progress(0.95, desc="Saving model...")
# Save final model (adapter weights) and training state
final_save_path = os.path.join(training_args.output_dir, "final_checkpoint")
log.append(f"Saving final model checkpoint to {final_save_path}...")
trainer.save_model(final_save_path)
trainer.save_state()
# Log metrics
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
for key, value in metrics.items():
log.append(f"{key}: {value}")
except Exception as e:
error_msg = f"An error occurred during training: {e}"
log.append(error_msg)
return "\n".join(log)
progress(1.0, desc="Training complete!")
log.append("Multi-GPU training process complete.")
return "\n".join(log)
# Define the Gradio interface
def create_interface():
with gr.Blocks(title="Llama 3 8B RVQ Fine-tuning") as demo:
gr.Markdown("# Llama 3 8B RVQ LoRA Fine-tuning")
gr.Markdown("Fine-tune a Llama 3 8B model with RVQ token embeddings using LoRA on multiple GPUs")
with gr.Row():
with gr.Column():
hf_username = gr.Textbox(label="HuggingFace Username", value="Twelve2five")
model_repo = gr.Textbox(label="Model Repository Name", value="llama-3-8b-rvq-resized")
dataset_repo = gr.Textbox(label="Dataset Repository Name", value="podcast-dialogue-rvq-pairs-3items")
with gr.Column():
epochs = gr.Number(label="Number of Epochs", value=1, minimum=1, maximum=10)
batch_size = gr.Number(label="Batch Size per Device", value=1, minimum=1, maximum=8)
grad_accum = gr.Number(label="Gradient Accumulation Steps", value=4, minimum=1, maximum=16)
lr = gr.Number(label="Learning Rate", value=1e-4)
start_btn = gr.Button("Start Training")
output = gr.Textbox(label="Training Log", lines=20)
start_btn.click(
fn=train_model,
inputs=[hf_username, model_repo, dataset_repo, epochs, batch_size, grad_accum, lr],
outputs=output
)
return demo
# Create and launch the interface
demo = create_interface()
if __name__ == "__main__":
demo.launch()