Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -298,7 +298,7 @@ def load_model():
|
|
298 |
log.append(f"LoRA rank: 8, alpha: 16 (optimized for 1B model)")
|
299 |
model_to_train.print_trainable_parameters()
|
300 |
|
301 |
-
return model, tokenizer
|
302 |
|
303 |
def load_dataset():
|
304 |
# --- Download the dataset repository files ---
|
@@ -670,77 +670,108 @@ def train_model(
|
|
670 |
sample_data = torch.load(sample_file)
|
671 |
log.append(f"Sample data type: {type(sample_data)}")
|
672 |
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
680 |
|
681 |
-
#
|
682 |
input_ids_list = []
|
683 |
labels_list = []
|
684 |
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
# If none of these patterns match, try to figure out the structure
|
703 |
else:
|
704 |
-
log.append(f"
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
input_ids_list.append(data[keys[0]])
|
709 |
-
labels_list.append(data[keys[1]])
|
710 |
-
# Handling tuple/list structure - the original expected format
|
711 |
-
elif isinstance(data, (tuple, list)) and len(data) >= 2:
|
712 |
-
input_ids_list.append(data[0])
|
713 |
-
labels_list.append(data[1])
|
714 |
-
else:
|
715 |
-
log.append(f"Unsupported data format in {pt_file}: {type(data)}")
|
716 |
|
717 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
718 |
|
719 |
-
|
720 |
-
processed_inputs = []
|
721 |
-
processed_labels = []
|
722 |
|
|
|
|
|
723 |
for i, (inputs, labels) in enumerate(zip(input_ids_list, labels_list)):
|
724 |
-
#
|
725 |
-
if not isinstance(inputs, torch.Tensor):
|
726 |
-
|
727 |
-
|
728 |
-
labels = torch.tensor(labels)
|
729 |
-
|
730 |
-
# Ensure they're integer tensors
|
731 |
-
inputs = inputs.long()
|
732 |
-
labels = labels.long()
|
733 |
-
|
734 |
-
# Append to lists, converting to standard Python lists for the Dataset
|
735 |
-
processed_inputs.append(inputs.tolist())
|
736 |
-
processed_labels.append(labels.tolist())
|
737 |
|
738 |
-
#
|
739 |
-
|
740 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
741 |
|
742 |
# Create the dataset
|
743 |
-
log.append("Creating dataset from
|
|
|
|
|
|
|
|
|
744 |
dataset = Dataset.from_dict({
|
745 |
"input_ids": processed_inputs,
|
746 |
"labels": processed_labels
|
@@ -754,6 +785,7 @@ def train_model(
|
|
754 |
log.append(f"Created dataset with {len(train_dataset)} training examples and {len(val_dataset)} validation examples")
|
755 |
|
756 |
except Exception as e:
|
|
|
757 |
error_msg = f"Error processing dataset: {str(e)}\n{traceback.format_exc()}"
|
758 |
log.append(error_msg)
|
759 |
return "\n".join(log)
|
|
|
298 |
log.append(f"LoRA rank: 8, alpha: 16 (optimized for 1B model)")
|
299 |
model_to_train.print_trainable_parameters()
|
300 |
|
301 |
+
return model, tokenizer
|
302 |
|
303 |
def load_dataset():
|
304 |
# --- Download the dataset repository files ---
|
|
|
670 |
sample_data = torch.load(sample_file)
|
671 |
log.append(f"Sample data type: {type(sample_data)}")
|
672 |
|
673 |
+
# Function to recursively explore the data structure
|
674 |
+
def explore_data(data, prefix=""):
|
675 |
+
if isinstance(data, (list, tuple)):
|
676 |
+
log.append(f"{prefix}List/Tuple with {len(data)} items")
|
677 |
+
if len(data) > 0:
|
678 |
+
explore_data(data[0], prefix + " [0]: ")
|
679 |
+
elif isinstance(data, dict):
|
680 |
+
log.append(f"{prefix}Dictionary with keys: {list(data.keys())}")
|
681 |
+
for key in list(data.keys())[:2]: # Look at first 2 keys
|
682 |
+
explore_data(data[key], prefix + f" ['{key}']: ")
|
683 |
+
elif isinstance(data, torch.Tensor):
|
684 |
+
log.append(f"{prefix}Tensor with shape {data.shape} and dtype {data.dtype}")
|
685 |
+
else:
|
686 |
+
log.append(f"{prefix}Other type: {type(data)}")
|
687 |
+
|
688 |
+
# Explore the sample data
|
689 |
+
explore_data(sample_data, "Sample data: ")
|
690 |
+
|
691 |
+
# Function to extract tensor data from complex structures
|
692 |
+
def extract_tensor_data(data):
|
693 |
+
if isinstance(data, torch.Tensor):
|
694 |
+
return data
|
695 |
+
elif isinstance(data, (list, tuple)) and len(data) > 0:
|
696 |
+
if all(isinstance(item, (int, float)) for item in data):
|
697 |
+
return torch.tensor(data)
|
698 |
+
# For lists of tensors/complex structures, use the first item
|
699 |
+
return extract_tensor_data(data[0])
|
700 |
+
elif isinstance(data, dict):
|
701 |
+
# Try common keys for input data
|
702 |
+
for key in ['input_ids', 'prompt', 'source', 'inputs', 'data']:
|
703 |
+
if key in data:
|
704 |
+
return extract_tensor_data(data[key])
|
705 |
+
# If none found, use the first key
|
706 |
+
if len(data) > 0:
|
707 |
+
return extract_tensor_data(next(iter(data.values())))
|
708 |
+
return None
|
709 |
|
710 |
+
# Process all files
|
711 |
input_ids_list = []
|
712 |
labels_list = []
|
713 |
|
714 |
+
# Capture any errors for later analysis
|
715 |
+
file_errors = []
|
716 |
+
|
717 |
+
for i, pt_file in enumerate(tqdm(pt_files, desc="Loading .pt files")):
|
718 |
+
try:
|
719 |
+
data = torch.load(pt_file)
|
720 |
+
|
721 |
+
if isinstance(data, (list, tuple)) and len(data) >= 2:
|
722 |
+
# Standard format: list/tuple with [input, label]
|
723 |
+
input_tensor = extract_tensor_data(data[0])
|
724 |
+
label_tensor = extract_tensor_data(data[1])
|
725 |
+
|
726 |
+
if input_tensor is not None and label_tensor is not None:
|
727 |
+
input_ids_list.append(input_tensor)
|
728 |
+
labels_list.append(label_tensor)
|
729 |
+
else:
|
730 |
+
file_errors.append(f"Could not extract tensors from {pt_file}")
|
|
|
731 |
else:
|
732 |
+
log.append(f"File {pt_file} has unexpected format. Skipping.")
|
733 |
+
file_errors.append(f"Unexpected format in {pt_file}: {type(data)}")
|
734 |
+
except Exception as e:
|
735 |
+
file_errors.append(f"Error processing file {pt_file}: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
736 |
|
737 |
+
# Log errors if any
|
738 |
+
if file_errors:
|
739 |
+
log.append(f"Encountered {len(file_errors)} errors during file processing:")
|
740 |
+
for i, error in enumerate(file_errors[:5]): # Log first 5 errors
|
741 |
+
log.append(f" Error {i+1}: {error}")
|
742 |
+
if len(file_errors) > 5:
|
743 |
+
log.append(f" ...and {len(file_errors) - 5} more errors")
|
744 |
|
745 |
+
log.append(f"Successfully processed {len(input_ids_list)} input/label pairs")
|
|
|
|
|
746 |
|
747 |
+
# Verify all tensors are valid
|
748 |
+
valid_pairs = []
|
749 |
for i, (inputs, labels) in enumerate(zip(input_ids_list, labels_list)):
|
750 |
+
# Perform safety checks on tensors
|
751 |
+
if not isinstance(inputs, torch.Tensor) or not isinstance(labels, torch.Tensor):
|
752 |
+
log.append(f"Pair {i}: Invalid tensor types - skipping")
|
753 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
754 |
|
755 |
+
# Ensure tensors contain integers
|
756 |
+
try:
|
757 |
+
inputs = inputs.long()
|
758 |
+
labels = labels.long()
|
759 |
+
|
760 |
+
# Convert to lists and add to valid pairs
|
761 |
+
valid_pairs.append((inputs.tolist(), labels.tolist()))
|
762 |
+
|
763 |
+
# Log some diagnostics for the first few pairs
|
764 |
+
if i < 3:
|
765 |
+
log.append(f"Pair {i}: Input shape: {inputs.shape}, Label shape: {labels.shape}")
|
766 |
+
except Exception as e:
|
767 |
+
log.append(f"Error converting tensors for pair {i}: {str(e)}")
|
768 |
|
769 |
# Create the dataset
|
770 |
+
log.append(f"Creating dataset from {len(valid_pairs)} valid pairs...")
|
771 |
+
|
772 |
+
processed_inputs = [pair[0] for pair in valid_pairs]
|
773 |
+
processed_labels = [pair[1] for pair in valid_pairs]
|
774 |
+
|
775 |
dataset = Dataset.from_dict({
|
776 |
"input_ids": processed_inputs,
|
777 |
"labels": processed_labels
|
|
|
785 |
log.append(f"Created dataset with {len(train_dataset)} training examples and {len(val_dataset)} validation examples")
|
786 |
|
787 |
except Exception as e:
|
788 |
+
import traceback
|
789 |
error_msg = f"Error processing dataset: {str(e)}\n{traceback.format_exc()}"
|
790 |
log.append(error_msg)
|
791 |
return "\n".join(log)
|