Spaces:
Sleeping
Sleeping
File size: 1,934 Bytes
a0b61a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import streamlit as st
from tensorflow.keras.models import load_model
from tensorflow.keras.layers import DepthwiseConv2D
from PIL import Image, ImageOps
import numpy as np
# Optional: Patch DepthwiseConv2D if needed
class PatchedDepthwiseConv2D(DepthwiseConv2D):
def _init_(self, *args, groups=1, **kwargs):
super()._init_(*args, **kwargs)
# Load model
model = load_model(r"keras_model.h5", compile=False, custom_objects={"DepthwiseConv2D": PatchedDepthwiseConv2D})
# Load class labels
with open(r"labels.txt", "r") as f:
class_names = f.readlines()
st.title("β» Garbage Classification Predictor")
# Upload image
uploaded_file = st.file_uploader("Upload a waste image (jpg, png)", type=["jpg", "jpeg", "png"])
if st.button("π§ͺ Predict Waste Type"):
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, use_container_width=True)
# Preprocess image
image = image.convert("RGB")
image = ImageOps.fit(image, (224, 224), Image.Resampling.LANCZOS)
image_array = np.asarray(image)
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
data[0] = normalized_image_array
# Make prediction
prediction = model.predict(data)
index = np.argmax(prediction)
predicted_label = class_names[index].strip()
confidence = prediction[0][index]
# Display result
st.success(f"Predicted Waste Type: *{predicted_label.upper()}*")
st.write(f"Confidence Score: *{confidence:.2f}*")
st.write("β» Dispose responsibly!")
else:
st.warning("β Please upload an image before predicting.")
# π Footer
st.markdown("---")
st.markdown("<p style='text-align: center; font-size: 18px;'>Developed with β€ By Twinkle Ghangare for EDUNET FOUNDATION </p>", unsafe_allow_html=True) |