Spaces:
Sleeping
Sleeping
Upload FIles
Browse files- app.py +105 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import seaborn as sns
|
| 6 |
+
from sklearn.ensemble import IsolationForest
|
| 7 |
+
from sklearn.preprocessing import StandardScaler
|
| 8 |
+
|
| 9 |
+
# Set page title and icon
|
| 10 |
+
st.set_page_config(page_title="Anomaly Detection App", page_icon="π")
|
| 11 |
+
|
| 12 |
+
# Custom CSS for better styling
|
| 13 |
+
st.markdown("""
|
| 14 |
+
<style>
|
| 15 |
+
.stButton>button {
|
| 16 |
+
background-color: #4CAF50;
|
| 17 |
+
color: white;
|
| 18 |
+
font-weight: bold;
|
| 19 |
+
border-radius: 5px;
|
| 20 |
+
padding: 10px 20px;
|
| 21 |
+
}
|
| 22 |
+
.stDownloadButton>button {
|
| 23 |
+
background-color: #008CBA;
|
| 24 |
+
color: white;
|
| 25 |
+
font-weight: bold;
|
| 26 |
+
border-radius: 5px;
|
| 27 |
+
padding: 10px 20px;
|
| 28 |
+
}
|
| 29 |
+
.stMarkdown h1 {
|
| 30 |
+
color: #4CAF50;
|
| 31 |
+
}
|
| 32 |
+
.stMarkdown h2 {
|
| 33 |
+
color: #008CBA;
|
| 34 |
+
}
|
| 35 |
+
</style>
|
| 36 |
+
""", unsafe_allow_html=True)
|
| 37 |
+
|
| 38 |
+
# Title of the app
|
| 39 |
+
st.title("π Anomaly Detection App")
|
| 40 |
+
st.write("""
|
| 41 |
+
This app uses the **Isolation Forest** algorithm to detect anomalies in your dataset.
|
| 42 |
+
Upload a CSV file, and the app will identify anomalies in the data.
|
| 43 |
+
""")
|
| 44 |
+
|
| 45 |
+
# Upload dataset
|
| 46 |
+
uploaded_file = st.file_uploader("Upload your dataset (CSV file)", type=["csv"])
|
| 47 |
+
|
| 48 |
+
if uploaded_file is not None:
|
| 49 |
+
# Load the dataset
|
| 50 |
+
df = pd.read_csv(uploaded_file)
|
| 51 |
+
|
| 52 |
+
# Show dataset preview
|
| 53 |
+
st.write("### Dataset Preview")
|
| 54 |
+
st.write(df.head())
|
| 55 |
+
|
| 56 |
+
# Select features for anomaly detection
|
| 57 |
+
st.write("### Select Features")
|
| 58 |
+
features = st.multiselect("Choose the features to use for anomaly detection", df.columns)
|
| 59 |
+
|
| 60 |
+
if features:
|
| 61 |
+
# Allow user to adjust contamination parameter
|
| 62 |
+
st.write("### Adjust Model Parameters")
|
| 63 |
+
contamination = st.slider("Contamination (proportion of anomalies)", 0.01, 0.5, 0.1, 0.01)
|
| 64 |
+
|
| 65 |
+
# Preprocess the data
|
| 66 |
+
scaler = StandardScaler()
|
| 67 |
+
df_scaled = scaler.fit_transform(df[features])
|
| 68 |
+
|
| 69 |
+
# Train the Isolation Forest model
|
| 70 |
+
with st.spinner("Training the model and detecting anomalies..."):
|
| 71 |
+
model = IsolationForest(n_estimators=100, contamination=contamination, random_state=42)
|
| 72 |
+
model.fit(df_scaled)
|
| 73 |
+
|
| 74 |
+
# Predict anomalies
|
| 75 |
+
predictions = model.predict(df_scaled)
|
| 76 |
+
df['anomaly'] = predictions # -1 for anomaly, 1 for normal
|
| 77 |
+
|
| 78 |
+
# Display results
|
| 79 |
+
st.write("### Anomaly Detection Results")
|
| 80 |
+
st.write(df)
|
| 81 |
+
|
| 82 |
+
# Filter and display only anomalies
|
| 83 |
+
anomalies = df[df['anomaly'] == -1]
|
| 84 |
+
st.write(f"### Detected Anomalies (Total: {len(anomalies)})")
|
| 85 |
+
st.write(anomalies)
|
| 86 |
+
|
| 87 |
+
# Visualize anomalies
|
| 88 |
+
st.write("### Visualize Anomalies")
|
| 89 |
+
if len(features) >= 2:
|
| 90 |
+
fig, ax = plt.subplots()
|
| 91 |
+
sns.scatterplot(data=df, x=features[0], y=features[1], hue='anomaly', palette={1: 'blue', -1: 'red'})
|
| 92 |
+
st.pyplot(fig)
|
| 93 |
+
else:
|
| 94 |
+
st.warning("Please select at least 2 features to visualize anomalies.")
|
| 95 |
+
|
| 96 |
+
# Download results as CSV
|
| 97 |
+
st.write("### Download Results")
|
| 98 |
+
st.download_button(
|
| 99 |
+
label="Download Results as CSV",
|
| 100 |
+
data=df.to_csv(index=False).encode('utf-8'),
|
| 101 |
+
file_name='anomaly_detection_results.csv',
|
| 102 |
+
mime='text/csv',
|
| 103 |
+
)
|
| 104 |
+
else:
|
| 105 |
+
st.write("Please upload a CSV file to get started.")
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scikit-learn
|
| 2 |
+
streamlit
|
| 3 |
+
pandas
|
| 4 |
+
numpy
|