Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| #import cudf.pandas | |
| #cudf.pandas.install() | |
| import pandas as pd | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| from uap_analyzer import UAPParser, UAPAnalyzer, UAPVisualizer | |
| # import ChartGen | |
| # from ChartGen import ChartGPT | |
| from Levenshtein import distance | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.metrics import confusion_matrix | |
| from stqdm import stqdm | |
| stqdm.pandas() | |
| import streamlit.components.v1 as components | |
| from dateutil import parser | |
| from sentence_transformers import SentenceTransformer | |
| import torch | |
| import squarify | |
| import matplotlib.colors as mcolors | |
| import textwrap | |
| import datamapplot | |
| st.set_option('deprecation.showPyplotGlobalUse', False) | |
| from pandas.api.types import ( | |
| is_categorical_dtype, | |
| is_datetime64_any_dtype, | |
| is_numeric_dtype, | |
| is_object_dtype, | |
| ) | |
| def load_data(file_path, key='df'): | |
| return pd.read_hdf(file_path, key=key) | |
| def gemini_query(question, selected_data, gemini_key): | |
| if question == "": | |
| question = "Summarize the following data in relevant bullet points" | |
| import pathlib | |
| import textwrap | |
| import google.generativeai as genai | |
| from IPython.display import display | |
| from IPython.display import Markdown | |
| def to_markdown(text): | |
| text = text.replace('•', ' *') | |
| return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True)) | |
| # selected_data is a list | |
| # remove empty | |
| filtered = [str(x) for x in selected_data if str(x) != '' and x is not None] | |
| # make a string | |
| context = '\n'.join(filtered) | |
| genai.configure(api_key=gemini_key) | |
| query_model = genai.GenerativeModel('models/gemini-1.5-pro-latest') | |
| response = query_model.generate_content([f"{question}\n Answer based on this context: {context}\n\n"]) | |
| return(response.text) | |
| def plot_treemap(df, column, top_n=32): | |
| # Get the value counts and the top N labels | |
| value_counts = df[column].value_counts() | |
| top_labels = value_counts.iloc[:top_n].index | |
| # Use np.where to replace all values not in the top N with 'Other' | |
| revised_column = f'{column}_revised' | |
| df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other') | |
| # Get the value counts including the 'Other' category | |
| sizes = df[revised_column].value_counts().values | |
| labels = df[revised_column].value_counts().index | |
| # Get a gradient of colors | |
| # colors = list(mcolors.TABLEAU_COLORS.values()) | |
| n_colors = len(sizes) | |
| colors = plt.cm.Oranges(np.linspace(0.3, 0.9, n_colors))[::-1] | |
| # Get % of each category | |
| percents = sizes / sizes.sum() | |
| # Prepare labels with percentages | |
| labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)] | |
| fig, ax = plt.subplots(figsize=(20, 12)) | |
| # Plot the treemap | |
| squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10}) | |
| ax = plt.gca() | |
| # Iterate over text elements and rectangles (patches) in the axes for color adjustment | |
| for text, rect in zip(ax.texts, ax.patches): | |
| background_color = rect.get_facecolor() | |
| r, g, b, _ = mcolors.to_rgba(background_color) | |
| brightness = np.average([r, g, b]) | |
| text.set_color('white' if brightness < 0.5 else 'black') | |
| # Adjust font size based on rectangle's area and wrap long text | |
| coef = 0.8 | |
| font_size = np.sqrt(rect.get_width() * rect.get_height()) * coef | |
| text.set_fontsize(font_size) | |
| wrapped_text = textwrap.fill(text.get_text(), width=20) | |
| text.set_text(wrapped_text) | |
| plt.axis('off') | |
| plt.gca().invert_yaxis() | |
| plt.gcf().set_size_inches(20, 12) | |
| fig.patch.set_alpha(0) | |
| ax.patch.set_alpha(0) | |
| return fig | |
| def plot_hist(df, column, bins=10, kde=True): | |
| fig, ax = plt.subplots(figsize=(12, 6)) | |
| sns.histplot(data=df, x=column, kde=True, bins=bins,color='orange') | |
| # set the ticks and frame in orange | |
| ax.spines['bottom'].set_color('orange') | |
| ax.spines['top'].set_color('orange') | |
| ax.spines['right'].set_color('orange') | |
| ax.spines['left'].set_color('orange') | |
| ax.xaxis.label.set_color('orange') | |
| ax.yaxis.label.set_color('orange') | |
| ax.tick_params(axis='x', colors='orange') | |
| ax.tick_params(axis='y', colors='orange') | |
| ax.title.set_color('orange') | |
| # Set transparent background | |
| fig.patch.set_alpha(0) | |
| ax.patch.set_alpha(0) | |
| return fig | |
| def plot_line(df, x_column, y_columns, figsize=(12, 10), color='orange', title=None, rolling_mean_value=2): | |
| import matplotlib.cm as cm | |
| # Sort the dataframe by the date column | |
| df = df.sort_values(by=x_column) | |
| # Calculate rolling mean for each y_column | |
| if rolling_mean_value: | |
| df[y_columns] = df[y_columns].rolling(len(df) // rolling_mean_value).mean() | |
| # Create the plot | |
| fig, ax = plt.subplots(figsize=figsize) | |
| colors = cm.Oranges(np.linspace(0.2, 1, len(y_columns))) | |
| # Plot each y_column as a separate line with a different color | |
| for i, y_column in enumerate(y_columns): | |
| df.plot(x=x_column, y=y_column, ax=ax, color=colors[i], label=y_column, linewidth=.5) | |
| # Rotate x-axis labels | |
| ax.set_xticklabels(ax.get_xticklabels(), rotation=30, ha='right') | |
| # Format x_column as date if it is | |
| if np.issubdtype(df[x_column].dtype, np.datetime64) or np.issubdtype(df[x_column].dtype, np.timedelta64): | |
| df[x_column] = pd.to_datetime(df[x_column]).dt.date | |
| # Set title, labels, and legend | |
| ax.set_title(title or f'{", ".join(y_columns)} over {x_column}', color=color, fontweight='bold') | |
| ax.set_xlabel(x_column, color=color) | |
| ax.set_ylabel(', '.join(y_columns), color=color) | |
| ax.spines['bottom'].set_color('orange') | |
| ax.spines['top'].set_color('orange') | |
| ax.spines['right'].set_color('orange') | |
| ax.spines['left'].set_color('orange') | |
| ax.xaxis.label.set_color('orange') | |
| ax.yaxis.label.set_color('orange') | |
| ax.tick_params(axis='x', colors='orange') | |
| ax.tick_params(axis='y', colors='orange') | |
| ax.title.set_color('orange') | |
| ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange') | |
| # Remove background | |
| fig.patch.set_alpha(0) | |
| ax.patch.set_alpha(0) | |
| return fig | |
| def plot_bar(df, x_column, y_column, figsize=(12, 10), color='orange', title=None, rotation=45): | |
| fig, ax = plt.subplots(figsize=figsize) | |
| sns.barplot(data=df, x=x_column, y=y_column, color=color, ax=ax) | |
| ax.set_title(title if title else f'{y_column} by {x_column}', color=color, fontweight='bold') | |
| ax.set_xlabel(x_column, color=color) | |
| ax.set_ylabel(y_column, color=color) | |
| ax.tick_params(axis='x', colors=color) | |
| ax.tick_params(axis='y', colors=color) | |
| plt.xticks(rotation=rotation) | |
| # Remove background | |
| fig.patch.set_alpha(0) | |
| ax.patch.set_alpha(0) | |
| ax.spines['bottom'].set_color('orange') | |
| ax.spines['top'].set_color('orange') | |
| ax.spines['right'].set_color('orange') | |
| ax.spines['left'].set_color('orange') | |
| ax.xaxis.label.set_color('orange') | |
| ax.yaxis.label.set_color('orange') | |
| ax.tick_params(axis='x', colors='orange') | |
| ax.tick_params(axis='y', colors='orange') | |
| ax.title.set_color('orange') | |
| ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange') | |
| return fig | |
| def plot_grouped_bar(df, x_columns, y_column, figsize=(12, 10), colors=None, title=None): | |
| fig, ax = plt.subplots(figsize=figsize) | |
| width = 0.8 / len(x_columns) # the width of the bars | |
| x = np.arange(len(df)) # the label locations | |
| for i, x_column in enumerate(x_columns): | |
| sns.barplot(data=df, x=x, y=y_column, color=colors[i] if colors else None, ax=ax, width=width, label=x_column) | |
| x += width # add the width of the bar to the x position for the next bar | |
| ax.set_title(title if title else f'{y_column} by {", ".join(x_columns)}', color='orange', fontweight='bold') | |
| ax.set_xlabel('Groups', color='orange') | |
| ax.set_ylabel(y_column, color='orange') | |
| ax.set_xticks(x - width * len(x_columns) / 2) | |
| ax.set_xticklabels(df.index) | |
| ax.tick_params(axis='x', colors='orange') | |
| ax.tick_params(axis='y', colors='orange') | |
| # Remove background | |
| fig.patch.set_alpha(0) | |
| ax.patch.set_alpha(0) | |
| ax.spines['bottom'].set_color('orange') | |
| ax.spines['top'].set_color('orange') | |
| ax.spines['right'].set_color('orange') | |
| ax.spines['left'].set_color('orange') | |
| ax.xaxis.label.set_color('orange') | |
| ax.yaxis.label.set_color('orange') | |
| ax.title.set_color('orange') | |
| ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange') | |
| return fig | |
| def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame: | |
| """ | |
| Adds a UI on top of a dataframe to let viewers filter columns | |
| Args: | |
| df (pd.DataFrame): Original dataframe | |
| Returns: | |
| pd.DataFrame: Filtered dataframe | |
| """ | |
| title_font = "Arial" | |
| body_font = "Arial" | |
| title_size = 32 | |
| colors = ["red", "green", "blue"] | |
| interpretation = False | |
| extract_docx = False | |
| title = "My Chart" | |
| regex = ".*" | |
| img_path = 'default_image.png' | |
| #try: | |
| # modify = st.checkbox("Add filters on raw data") | |
| #except: | |
| # try: | |
| # modify = st.checkbox("Add filters on processed data") | |
| # except: | |
| # try: | |
| # modify = st.checkbox("Add filters on parsed data") | |
| # except: | |
| # pass | |
| #if not modify: | |
| # return df | |
| df_ = df.copy() | |
| # Try to convert datetimes into a standard format (datetime, no timezone) | |
| #modification_container = st.container() | |
| #with modification_container: | |
| try: | |
| to_filter_columns = st.multiselect("Filter dataframe on", df_.columns) | |
| except: | |
| try: | |
| to_filter_columns = st.multiselect("Filter dataframe", df_.columns) | |
| except: | |
| try: | |
| to_filter_columns = st.multiselect("Filter the dataframe on", df_.columns) | |
| except: | |
| pass | |
| date_column = None | |
| filtered_columns = [] | |
| for column in to_filter_columns: | |
| left, right = st.columns((1, 20)) | |
| # Treat columns with < 200 unique values as categorical if not date or numeric | |
| if is_categorical_dtype(df_[column]) or (df_[column].nunique() < 120 and not is_datetime64_any_dtype(df_[column]) and not is_numeric_dtype(df_[column])): | |
| user_cat_input = right.multiselect( | |
| f"Values for {column}", | |
| df_[column].value_counts().index.tolist(), | |
| default=list(df_[column].value_counts().index) | |
| ) | |
| df_ = df_[df_[column].isin(user_cat_input)] | |
| filtered_columns.append(column) | |
| with st.status(f"Category Distribution: {column}", expanded=False) as stat: | |
| st.pyplot(plot_treemap(df_, column)) | |
| elif is_numeric_dtype(df_[column]): | |
| _min = float(df_[column].min()) | |
| _max = float(df_[column].max()) | |
| step = (_max - _min) / 100 | |
| user_num_input = right.slider( | |
| f"Values for {column}", | |
| min_value=_min, | |
| max_value=_max, | |
| value=(_min, _max), | |
| step=step, | |
| ) | |
| df_ = df_[df_[column].between(*user_num_input)] | |
| filtered_columns.append(column) | |
| # Chart_GPT = ChartGPT(df_, title_font, body_font, title_size, | |
| # colors, interpretation, extract_docx, img_path) | |
| with st.status(f"Numerical Distribution: {column}", expanded=False) as stat_: | |
| st.pyplot(plot_hist(df_, column, bins=int(round(len(df_[column].unique())-1)/2))) | |
| elif is_object_dtype(df_[column]): | |
| try: | |
| df_[column] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce') | |
| except Exception: | |
| try: | |
| df_[column] = df_[column].apply(parser.parse) | |
| except Exception: | |
| pass | |
| if is_datetime64_any_dtype(df_[column]): | |
| df_[column] = df_[column].dt.tz_localize(None) | |
| min_date = df_[column].min().date() | |
| max_date = df_[column].max().date() | |
| user_date_input = right.date_input( | |
| f"Values for {column}", | |
| value=(min_date, max_date), | |
| min_value=min_date, | |
| max_value=max_date, | |
| ) | |
| # if len(user_date_input) == 2: | |
| # start_date, end_date = user_date_input | |
| # df_ = df_.loc[df_[column].dt.date.between(start_date, end_date)] | |
| if len(user_date_input) == 2: | |
| user_date_input = tuple(map(pd.to_datetime, user_date_input)) | |
| start_date, end_date = user_date_input | |
| # Determine the most appropriate time unit for plot | |
| time_units = { | |
| 'year': df_[column].dt.year, | |
| 'month': df_[column].dt.to_period('M'), | |
| 'day': df_[column].dt.date | |
| } | |
| unique_counts = {unit: col.nunique() for unit, col in time_units.items()} | |
| closest_to_36 = min(unique_counts, key=lambda k: abs(unique_counts[k] - 36)) | |
| # Group by the most appropriate time unit and count occurrences | |
| grouped = df_.groupby(time_units[closest_to_36]).size().reset_index(name='count') | |
| grouped.columns = [column, 'count'] | |
| # Create a complete date range | |
| if closest_to_36 == 'year': | |
| date_range = pd.date_range(start=f"{start_date.year}-01-01", end=f"{end_date.year}-12-31", freq='YS') | |
| elif closest_to_36 == 'month': | |
| date_range = pd.date_range(start=start_date.replace(day=1), end=end_date + pd.offsets.MonthEnd(0), freq='MS') | |
| else: # day | |
| date_range = pd.date_range(start=start_date, end=end_date, freq='D') | |
| # Create a DataFrame with the complete date range | |
| complete_range = pd.DataFrame({column: date_range}) | |
| # Convert the date column to the appropriate format based on closest_to_36 | |
| if closest_to_36 == 'year': | |
| complete_range[column] = complete_range[column].dt.year | |
| elif closest_to_36 == 'month': | |
| complete_range[column] = complete_range[column].dt.to_period('M') | |
| # Merge the complete range with the grouped data | |
| final_data = pd.merge(complete_range, grouped, on=column, how='left').fillna(0) | |
| with st.status(f"Date Distributions: {column}", expanded=False) as stat: | |
| try: | |
| st.pyplot(plot_bar(final_data, column, 'count')) | |
| except Exception as e: | |
| st.error(f"Error plotting bar chart: {e}") | |
| df_ = df_.loc[df_[column].between(start_date, end_date)] | |
| date_column = column | |
| if date_column and filtered_columns: | |
| numeric_columns = [col for col in filtered_columns if is_numeric_dtype(df_[col])] | |
| if numeric_columns: | |
| fig = plot_line(df_, date_column, numeric_columns) | |
| #st.pyplot(fig) | |
| # now to deal with categorical columns | |
| categorical_columns = [col for col in filtered_columns if is_categorical_dtype(df_[col])] | |
| if categorical_columns: | |
| fig2 = plot_bar(df_, date_column, categorical_columns[0]) | |
| #st.pyplot(fig2) | |
| with st.status(f"Date Distribution: {column}", expanded=False) as stat: | |
| try: | |
| st.pyplot(fig) | |
| except Exception as e: | |
| st.error(f"Error plotting line chart: {e}") | |
| pass | |
| try: | |
| st.pyplot(fig2) | |
| except Exception as e: | |
| st.error(f"Error plotting bar chart: {e}") | |
| else: | |
| user_text_input = right.text_input( | |
| f"Substring or regex in {column}", | |
| ) | |
| if user_text_input: | |
| df_ = df_[df_[column].astype(str).str.contains(user_text_input)] | |
| # write len of df after filtering with % of original | |
| st.write(f"{len(df_)} rows ({len(df_) / len(df) * 100:.2f}%)") | |
| return df_ | |
| def merge_clusters(df, column): | |
| cluster_terms_ = df.__dict__['cluster_terms'] | |
| cluster_labels_ = df.__dict__['cluster_labels'] | |
| label_name_map = {label: cluster_terms_[label] for label in set(cluster_labels_)} | |
| merge_map = {} | |
| # Iterate over term pairs and decide on merging based on the distance | |
| for idx, term1 in enumerate(cluster_terms_): | |
| for jdx, term2 in enumerate(cluster_terms_): | |
| if idx < jdx and distance(term1, term2) <= 3: # Adjust threshold as needed | |
| # Decide to merge labels corresponding to jdx into labels corresponding to idx | |
| # Find labels corresponding to jdx and idx | |
| labels_to_merge = [label for label, term_index in enumerate(cluster_labels_) if term_index == jdx] | |
| for label in labels_to_merge: | |
| merge_map[label] = idx # Map the label to use the term index of term1 | |
| # Update the analyzer with the merged numeric labels | |
| updated_cluster_labels_ = [merge_map[label] if label in merge_map else label for label in cluster_labels_] | |
| df.__dict__['cluster_labels'] = updated_cluster_labels_ | |
| # Optional: Update string labels to reflect merged labels | |
| updated_string_labels = [cluster_terms_[label] for label in updated_cluster_labels_] | |
| df.__dict__['string_labels'] = updated_string_labels | |
| return updated_string_labels | |
| def analyze_and_predict(data, analyzers, col_names, clusters): | |
| visualizer = UAPVisualizer() | |
| new_data = pd.DataFrame() | |
| for i, column in enumerate(col_names): | |
| #new_data[f'Analyzer_{column}'] = analyzers[column].__dict__['cluster_labels'] | |
| new_data[f'Analyzer_{column}'] = clusters[column] | |
| data[f'Analyzer_{column}'] = clusters[column] | |
| #data[f'Analyzer_{column}'] = analyzer.__dict__['cluster_labels'] | |
| print(f"Cluster terms extracted for {column}") | |
| for col in data.columns: | |
| if 'Analyzer' in col: | |
| data[col] = data[col].astype('category') | |
| new_data = new_data.fillna('null').astype('category') | |
| data_nums = new_data.apply(lambda x: x.cat.codes) | |
| for col in data_nums.columns: | |
| try: | |
| categories = new_data[col].cat.categories | |
| x_train, x_test, y_train, y_test = train_test_split(data_nums.drop(columns=[col]), data_nums[col], test_size=0.2, random_state=42) | |
| bst, accuracy, preds = visualizer.train_xgboost(x_train, y_train, x_test, y_test, len(categories)) | |
| fig = visualizer.plot_results(new_data, bst, x_test, y_test, preds, categories, accuracy, col) | |
| with st.status(f"Charts Analyses: {col}", expanded=True) as status: | |
| st.pyplot(fig) | |
| status.update(label=f"Chart Processed: {col}", expanded=False) | |
| except Exception as e: | |
| print(f"Error processing {col}: {e}") | |
| continue | |
| return new_data, data | |
| from config import API_KEY, GEMINI_KEY, FORMAT_LONG | |
| with torch.no_grad(): | |
| torch.cuda.empty_cache() | |
| #st.set_page_config( | |
| # page_title="UAP ANALYSIS", | |
| # page_icon=":alien:", | |
| # layout="wide", | |
| # initial_sidebar_state="expanded", | |
| #) | |
| st.title('UAP Analysis Dashboard') | |
| # Initialize session state | |
| if 'analyzers' not in st.session_state: | |
| st.session_state['analyzers'] = [] | |
| if 'col_names' not in st.session_state: | |
| st.session_state['col_names'] = [] | |
| if 'clusters' not in st.session_state: | |
| st.session_state['clusters'] = {} | |
| if 'new_data' not in st.session_state: | |
| st.session_state['new_data'] = pd.DataFrame() | |
| if 'dataset' not in st.session_state: | |
| st.session_state['dataset'] = pd.DataFrame() | |
| if 'data_processed' not in st.session_state: | |
| st.session_state['data_processed'] = False | |
| if 'stage' not in st.session_state: | |
| st.session_state['stage'] = 0 | |
| if 'filtered_data' not in st.session_state: | |
| st.session_state['filtered_data'] = None | |
| if 'gemini_answer' not in st.session_state: | |
| st.session_state['gemini_answer'] = None | |
| if 'parsed_responses' not in st.session_state: | |
| st.session_state['parsed_responses'] = None | |
| # Load dataset | |
| data_path = 'parsed_files_distance_embeds.h5' | |
| my_dataset = st.file_uploader("Upload Parsed DataFrame", type=["csv", "xlsx"]) | |
| if my_dataset is not None: | |
| if parsed: # save space by cleaning default dataset | |
| parsed = None | |
| try: | |
| if my_dataset.type == "text/csv": | |
| data = pd.read_csv(my_dataset) | |
| elif my_dataset.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": | |
| data = pd.read_excel(my_dataset) | |
| else: | |
| st.error("Unsupported file type. Please upload a CSV, Excel or HD5 file.") | |
| st.stop() | |
| parser = filter_dataframe(data) | |
| st.session_state['parsed_responses'] = parser | |
| st.dataframe(parser) | |
| st.success(f"Successfully loaded and displayed data from {my_dataset.name}") | |
| except Exception as e: | |
| st.error(f"An error occurred while reading the file: {e}") | |
| else: | |
| parsed = load_data(data_path).drop(columns=['embeddings']) | |
| parsed_responses = filter_dataframe(parsed) | |
| st.session_state['parsed_responses'] = parsed_responses | |
| st.dataframe(parsed_responses) | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| col_parsed = st.selectbox("Which column do you want to query?", st.session_state['parsed_responses'].columns) | |
| with col2: | |
| GEMINI_KEY = st.text_input('Gemini API Key', value=GEMINI_KEY, type='password', help="Enter your Gemini API key") | |
| if col_parsed and GEMINI_KEY: | |
| selected_column_data = st.session_state['parsed_responses'][col_parsed].tolist() | |
| question = st.text_input("Ask a question or leave empty for summarization") | |
| if st.button("Generate Query") and selected_column_data: | |
| st.write(gemini_query(question, selected_column_data, GEMINI_KEY)) | |
| st.session_state['stage'] = 1 | |
| if st.session_state['stage'] > 0 : | |
| with st.form(border=True, key='Select Columns for Analysis'): | |
| columns_to_analyze = st.multiselect( | |
| label='Select columns to analyze', | |
| options=st.session_state['parsed_responses'].columns | |
| ) | |
| if st.form_submit_button("Process Data"): | |
| if columns_to_analyze: | |
| analyzers = [] | |
| col_names = [] | |
| clusters = {} | |
| for column in columns_to_analyze: | |
| with torch.no_grad(): | |
| with st.status(f"Processing {column}", expanded=True) as status: | |
| analyzer = UAPAnalyzer(st.session_state['parsed_responses'], column) | |
| st.write(f"Processing {column}...") | |
| analyzer.preprocess_data(top_n=32) | |
| st.write("Reducing dimensionality...") | |
| analyzer.reduce_dimensionality(method='UMAP', n_components=2, n_neighbors=15, min_dist=0.1) | |
| st.write("Clustering data...") | |
| analyzer.cluster_data(method='HDBSCAN', min_cluster_size=15) | |
| analyzer.get_tf_idf_clusters(top_n=3) | |
| st.write("Naming clusters...") | |
| analyzers.append(analyzer) | |
| col_names.append(column) | |
| clusters[column] = analyzer.merge_similar_clusters(cluster_terms=analyzer.__dict__['cluster_terms'], cluster_labels=analyzer.__dict__['cluster_labels']) | |
| # Run the visualization | |
| # fig = datamapplot.create_plot( | |
| # analyzer.__dict__['reduced_embeddings'], | |
| # analyzer.__dict__['cluster_labels'].astype(str), | |
| # #label_font_size=11, | |
| # label_wrap_width=20, | |
| # use_medoids=True, | |
| # )#.to_html(full_html=False, include_plotlyjs='cdn') | |
| # st.pyplot(fig.savefig()) | |
| status.update(label=f"Processing {column} complete", expanded=False) | |
| st.session_state['analyzers'] = analyzers | |
| st.session_state['col_names'] = col_names | |
| st.session_state['clusters'] = clusters | |
| # save space | |
| parsed = None | |
| analyzers = None | |
| col_names = None | |
| clusters = None | |
| if st.session_state['clusters'] is not None: | |
| try: | |
| new_data, parsed_responses = analyze_and_predict(st.session_state['parsed_responses'], st.session_state['analyzers'], st.session_state['col_names'], st.session_state['clusters']) | |
| st.session_state['dataset'] = parsed_responses | |
| st.session_state['new_data'] = new_data | |
| st.session_state['data_processed'] = True | |
| except Exception as e: | |
| st.write(f"Error processing data: {e}") | |
| if st.session_state['data_processed']: | |
| try: | |
| visualizer = UAPVisualizer(data=st.session_state['new_data']) | |
| #new_data = pd.DataFrame() # Assuming new_data is prepared earlier in the code | |
| fig2 = visualizer.plot_cramers_v_heatmap(data=st.session_state['new_data'], significance_level=0.05) | |
| with st.status(f"Cramer's V Chart", expanded=True) as statuss: | |
| st.pyplot(fig2) | |
| statuss.update(label="Cramer's V chart plotted", expanded=False) | |
| except Exception as e: | |
| st.write(f"Error plotting Cramers V: {e}") | |
| for i, column in enumerate(st.session_state['col_names']): | |
| #if stateful_button(f"Show {column} clusters {i}", key=f"show_{column}_clusters"): | |
| # if st.session_state['data_processed']: | |
| # with st.status(f"Show clusters {column}", expanded=True) as stats: | |
| # fig3 = st.session_state['analyzers'][i].plot_embeddings4(title=f"{column} clusters", cluster_terms=st.session_state['analyzers'][i].__dict__['cluster_terms'], cluster_labels=st.session_state['analyzers'][i].__dict__['cluster_labels'], reduced_embeddings=st.session_state['analyzers'][i].__dict__['reduced_embeddings'], column=f'Analyzer_{column}', data=st.session_state['new_data']) | |
| # stats.update(label=f"Show clusters {column} complete", expanded=False) | |
| if st.session_state['data_processed']: | |
| with st.status(f"Show clusters {column}", expanded=True) as stats: | |
| fig3 = st.session_state['analyzers'][i].plot_embeddings4( | |
| title=f"{column} clusters", | |
| cluster_terms=st.session_state['analyzers'][i].__dict__['cluster_terms'], | |
| cluster_labels=st.session_state['analyzers'][i].__dict__['cluster_labels'], | |
| reduced_embeddings=st.session_state['analyzers'][i].__dict__['reduced_embeddings'], | |
| column=column, # Use the original column name here | |
| data=st.session_state['parsed_responses'] # Use the original dataset here | |
| ) | |
| stats.update(label=f"Show clusters {column} complete", expanded=False) | |
| st.session_state['analysis_complete'] = True | |
| # this will check if the dataframe is not empty | |
| # if st.session_state['new_data'] is not None: | |
| # parsed2 = st.session_state.get('dataset', pd.DataFrame()) | |
| # parsed2 = filter_dataframe(parsed2) | |
| # col1, col2 = st.columns(2) | |
| # st.dataframe(parsed2) | |
| # with col1: | |
| # col_parsed2 = st.selectbox("Which columns do you want to query?", parsed2.columns) | |
| # with col2: | |
| # GEMINI_KEY = st.text_input('Gemini APIs Key', GEMINI_KEY, type='password', help="Enter your Gemini API key") | |
| # if col_parsed and GEMINI_KEY: | |
| # selected_column_data2 = parsed2[col_parsed2].tolist() | |
| # question2 = st.text_input("Ask a questions or leave empty for summarization") | |
| # if st.button("Generate Query") and selected_column_data2: | |
| # with st.status(f"Generating Query", expanded=True) as status: | |
| # gemini_answer = gemini_query(question2, selected_column_data2, GEMINI_KEY) | |
| # st.write(gemini_answer) | |
| # st.session_state['gemini_answer'] = gemini_answer | |
| if 'analysis_complete' in st.session_state and st.session_state['analysis_complete']: | |
| ticked_analysis = st.checkbox('Query Processed Data') | |
| if ticked_analysis: | |
| if st.session_state['new_data'] is not None: | |
| parsed2 = st.session_state.get('dataset', pd.DataFrame()).copy() | |
| parsed2 = filter_dataframe(parsed2) | |
| col1, col2 = st.columns(2) | |
| st.dataframe(parsed2) | |
| with col1: | |
| col_parsed2 = st.selectbox("Which columns do you want to query?", parsed2.columns) | |
| with col2: | |
| GEMINI_KEY = st.text_input('Gemini APIs Key', value=GEMINI_KEY, type='password', help="Enter your Gemini API key") | |
| if col_parsed2 and GEMINI_KEY: | |
| selected_column_data2 = parsed2[col_parsed2].tolist() | |
| question2 = st.text_input("Ask a questions or leave empty for summarization") | |
| if st.button("Generate Queries") and selected_column_data2: | |
| with st.status(f"Generating Query", expanded=True) as status: | |
| gemini_answer = gemini_query(question2, selected_column_data2, GEMINI_KEY) | |
| st.write(gemini_answer) | |
| st.session_state['gemini_answer'] = gemini_answer | |