Spaces:
Sleeping
Sleeping
| import json | |
| import streamlit as st | |
| #import geopandas as gpd | |
| from keplergl import keplergl | |
| import pandas as pd | |
| import streamlit as st | |
| import pandas as pd | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| from uap_analyzer import UAPParser, UAPAnalyzer, UAPVisualizer | |
| # import ChartGen | |
| # from ChartGen import ChartGPT | |
| from Levenshtein import distance | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.metrics import confusion_matrix | |
| from stqdm import stqdm | |
| stqdm.pandas() | |
| import streamlit.components.v1 as components | |
| from dateutil import parser | |
| from sentence_transformers import SentenceTransformer | |
| import torch | |
| import squarify | |
| import matplotlib.colors as mcolors | |
| import textwrap | |
| import datamapplot | |
| from streamlit_extras.stateful_button import button as stateful_button | |
| from streamlit_keplergl import keplergl_static | |
| from keplergl import KeplerGl | |
| st.set_option('deprecation.showPyplotGlobalUse', False) | |
| from pandas.api.types import ( | |
| is_categorical_dtype, | |
| is_datetime64_any_dtype, | |
| is_numeric_dtype, | |
| is_object_dtype, | |
| ) | |
| st.title('Interactive Map') | |
| # Initialize session state | |
| if 'analyzers' not in st.session_state: | |
| st.session_state['analyzers'] = [] | |
| if 'col_names' not in st.session_state: | |
| st.session_state['col_names'] = [] | |
| if 'clusters' not in st.session_state: | |
| st.session_state['clusters'] = {} | |
| if 'new_data' not in st.session_state: | |
| st.session_state['new_data'] = pd.DataFrame() | |
| if 'dataset' not in st.session_state: | |
| st.session_state['dataset'] = pd.DataFrame() | |
| if 'data_processed' not in st.session_state: | |
| st.session_state['data_processed'] = False | |
| if 'stage' not in st.session_state: | |
| st.session_state['stage'] = 0 | |
| if 'filtered_data' not in st.session_state: | |
| st.session_state['filtered_data'] = None | |
| if 'gemini_answer' not in st.session_state: | |
| st.session_state['gemini_answer'] = None | |
| if 'parsed_responses' not in st.session_state: | |
| st.session_state['parsed_responses'] = None | |
| if 'map_generated' not in st.session_state: | |
| st.session_state['map_generated'] = False | |
| if 'date_loaded' not in st.session_state: | |
| st.session_state['data_loaded'] = False | |
| if "datasets" not in st.session_state: | |
| st.session_state.datasets = [] | |
| # sf_zip_geo_gdf = gpd.read_file("sf_zip_geo.geojson") | |
| # sf_zip_geo_gdf.label = "SF Zip Geo" | |
| # sf_zip_geo_gdf.id = "sf-zip-geo" | |
| # st.session_state.datasets.append(sf_zip_geo_gdf) | |
| def plot_treemap(df, column, top_n=32): | |
| # Get the value counts and the top N labels | |
| value_counts = df[column].value_counts() | |
| top_labels = value_counts.iloc[:top_n].index | |
| # Use np.where to replace all values not in the top N with 'Other' | |
| revised_column = f'{column}_revised' | |
| df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other') | |
| # Get the value counts including the 'Other' category | |
| sizes = df[revised_column].value_counts().values | |
| labels = df[revised_column].value_counts().index | |
| # Get a gradient of colors | |
| # colors = list(mcolors.TABLEAU_COLORS.values()) | |
| n_colors = len(sizes) | |
| colors = plt.cm.Oranges(np.linspace(0.3, 0.9, n_colors))[::-1] | |
| # Get % of each category | |
| percents = sizes / sizes.sum() | |
| # Prepare labels with percentages | |
| labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)] | |
| fig, ax = plt.subplots(figsize=(20, 12)) | |
| # Plot the treemap | |
| squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10}) | |
| ax = plt.gca() | |
| # Iterate over text elements and rectangles (patches) in the axes for color adjustment | |
| for text, rect in zip(ax.texts, ax.patches): | |
| background_color = rect.get_facecolor() | |
| r, g, b, _ = mcolors.to_rgba(background_color) | |
| brightness = np.average([r, g, b]) | |
| text.set_color('white' if brightness < 0.5 else 'black') | |
| # Adjust font size based on rectangle's area and wrap long text | |
| coef = 0.8 | |
| font_size = np.sqrt(rect.get_width() * rect.get_height()) * coef | |
| text.set_fontsize(font_size) | |
| wrapped_text = textwrap.fill(text.get_text(), width=20) | |
| text.set_text(wrapped_text) | |
| plt.axis('off') | |
| plt.gca().invert_yaxis() | |
| plt.gcf().set_size_inches(20, 12) | |
| fig.patch.set_alpha(0) | |
| ax.patch.set_alpha(0) | |
| return fig | |
| def plot_hist(df, column, bins=10, kde=True): | |
| fig, ax = plt.subplots(figsize=(12, 6)) | |
| sns.histplot(data=df, x=column, kde=True, bins=bins,color='orange') | |
| # set the ticks and frame in orange | |
| ax.spines['bottom'].set_color('orange') | |
| ax.spines['top'].set_color('orange') | |
| ax.spines['right'].set_color('orange') | |
| ax.spines['left'].set_color('orange') | |
| ax.xaxis.label.set_color('orange') | |
| ax.yaxis.label.set_color('orange') | |
| ax.tick_params(axis='x', colors='orange') | |
| ax.tick_params(axis='y', colors='orange') | |
| ax.title.set_color('orange') | |
| # Set transparent background | |
| fig.patch.set_alpha(0) | |
| ax.patch.set_alpha(0) | |
| return fig | |
| def plot_line(df, x_column, y_columns, figsize=(12, 10), color='orange', title=None, rolling_mean_value=2): | |
| import matplotlib.cm as cm | |
| # Sort the dataframe by the date column | |
| df = df.sort_values(by=x_column) | |
| # Calculate rolling mean for each y_column | |
| if rolling_mean_value: | |
| df[y_columns] = df[y_columns].rolling(len(df) // rolling_mean_value).mean() | |
| # Create the plot | |
| fig, ax = plt.subplots(figsize=figsize) | |
| colors = cm.Oranges(np.linspace(0.2, 1, len(y_columns))) | |
| # Plot each y_column as a separate line with a different color | |
| for i, y_column in enumerate(y_columns): | |
| df.plot(x=x_column, y=y_column, ax=ax, color=colors[i], label=y_column, linewidth=.5) | |
| # Rotate x-axis labels | |
| ax.set_xticklabels(ax.get_xticklabels(), rotation=30, ha='right') | |
| # Format x_column as date if it is | |
| if np.issubdtype(df[x_column].dtype, np.datetime64) or np.issubdtype(df[x_column].dtype, np.timedelta64): | |
| df[x_column] = pd.to_datetime(df[x_column]).dt.date | |
| # Set title, labels, and legend | |
| ax.set_title(title or f'{", ".join(y_columns)} over {x_column}', color=color, fontweight='bold') | |
| ax.set_xlabel(x_column, color=color) | |
| ax.set_ylabel(', '.join(y_columns), color=color) | |
| ax.spines['bottom'].set_color('orange') | |
| ax.spines['top'].set_color('orange') | |
| ax.spines['right'].set_color('orange') | |
| ax.spines['left'].set_color('orange') | |
| ax.xaxis.label.set_color('orange') | |
| ax.yaxis.label.set_color('orange') | |
| ax.tick_params(axis='x', colors='orange') | |
| ax.tick_params(axis='y', colors='orange') | |
| ax.title.set_color('orange') | |
| ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange') | |
| # Remove background | |
| fig.patch.set_alpha(0) | |
| ax.patch.set_alpha(0) | |
| return fig | |
| def plot_bar(df, x_column, y_column, figsize=(12, 10), color='orange', title=None, rotation=45): | |
| fig, ax = plt.subplots(figsize=figsize) | |
| sns.barplot(data=df, x=x_column, y=y_column, color=color, ax=ax) | |
| ax.set_title(title if title else f'{y_column} by {x_column}', color=color, fontweight='bold') | |
| ax.set_xlabel(x_column, color=color) | |
| ax.set_ylabel(y_column, color=color) | |
| ax.tick_params(axis='x', colors=color) | |
| ax.tick_params(axis='y', colors=color) | |
| plt.xticks(rotation=rotation) | |
| # Remove background | |
| fig.patch.set_alpha(0) | |
| ax.patch.set_alpha(0) | |
| ax.spines['bottom'].set_color('orange') | |
| ax.spines['top'].set_color('orange') | |
| ax.spines['right'].set_color('orange') | |
| ax.spines['left'].set_color('orange') | |
| ax.xaxis.label.set_color('orange') | |
| ax.yaxis.label.set_color('orange') | |
| ax.tick_params(axis='x', colors='orange') | |
| ax.tick_params(axis='y', colors='orange') | |
| ax.title.set_color('orange') | |
| ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange') | |
| return fig | |
| def plot_grouped_bar(df, x_columns, y_column, figsize=(12, 10), colors=None, title=None): | |
| fig, ax = plt.subplots(figsize=figsize) | |
| width = 0.8 / len(x_columns) # the width of the bars | |
| x = np.arange(len(df)) # the label locations | |
| for i, x_column in enumerate(x_columns): | |
| sns.barplot(data=df, x=x, y=y_column, color=colors[i] if colors else None, ax=ax, width=width, label=x_column) | |
| x += width # add the width of the bar to the x position for the next bar | |
| ax.set_title(title if title else f'{y_column} by {", ".join(x_columns)}', color='orange', fontweight='bold') | |
| ax.set_xlabel('Groups', color='orange') | |
| ax.set_ylabel(y_column, color='orange') | |
| ax.set_xticks(x - width * len(x_columns) / 2) | |
| ax.set_xticklabels(df.index) | |
| ax.tick_params(axis='x', colors='orange') | |
| ax.tick_params(axis='y', colors='orange') | |
| # Remove background | |
| fig.patch.set_alpha(0) | |
| ax.patch.set_alpha(0) | |
| ax.spines['bottom'].set_color('orange') | |
| ax.spines['top'].set_color('orange') | |
| ax.spines['right'].set_color('orange') | |
| ax.spines['left'].set_color('orange') | |
| ax.xaxis.label.set_color('orange') | |
| ax.yaxis.label.set_color('orange') | |
| ax.title.set_color('orange') | |
| ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange') | |
| return fig | |
| def generate_kepler_map(data): | |
| map_config = keplergl(data, height=400) | |
| return map_config | |
| def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame: | |
| """ | |
| Adds a UI on top of a dataframe to let viewers filter columns | |
| Args: | |
| df (pd.DataFrame): Original dataframe | |
| Returns: | |
| pd.DataFrame: Filtered dataframe | |
| """ | |
| title_font = "Arial" | |
| body_font = "Arial" | |
| title_size = 32 | |
| colors = ["red", "green", "blue"] | |
| interpretation = False | |
| extract_docx = False | |
| title = "My Chart" | |
| regex = ".*" | |
| img_path = 'default_image.png' | |
| #try: | |
| # modify = st.checkbox("Add filters on raw data") | |
| #except: | |
| # try: | |
| # modify = st.checkbox("Add filters on processed data") | |
| # except: | |
| # try: | |
| # modify = st.checkbox("Add filters on parsed data") | |
| # except: | |
| # pass | |
| #if not modify: | |
| # return df | |
| df_ = df.copy() | |
| # Try to convert datetimes into a standard format (datetime, no timezone) | |
| #modification_container = st.container() | |
| #with modification_container: | |
| try: | |
| to_filter_columns = st.multiselect("Filter dataframe on", df_.columns) | |
| except: | |
| try: | |
| to_filter_columns = st.multiselect("Filter dataframe", df_.columns) | |
| except: | |
| try: | |
| to_filter_columns = st.multiselect("Filter the dataframe on", df_.columns) | |
| except: | |
| pass | |
| date_column = None | |
| filtered_columns = [] | |
| for column in to_filter_columns: | |
| left, right = st.columns((1, 20)) | |
| # Treat columns with < 200 unique values as categorical if not date or numeric | |
| if is_categorical_dtype(df_[column]) or (df_[column].nunique() < 120 and not is_datetime64_any_dtype(df_[column]) and not is_numeric_dtype(df_[column])): | |
| user_cat_input = right.multiselect( | |
| f"Values for {column}", | |
| df_[column].value_counts().index.tolist(), | |
| default=list(df_[column].value_counts().index) | |
| ) | |
| df_ = df_[df_[column].isin(user_cat_input)] | |
| filtered_columns.append(column) | |
| with st.status(f"Category Distribution: {column}", expanded=False) as stat: | |
| st.pyplot(plot_treemap(df_, column)) | |
| elif is_numeric_dtype(df_[column]): | |
| _min = float(df_[column].min()) | |
| _max = float(df_[column].max()) | |
| step = (_max - _min) / 100 | |
| user_num_input = right.slider( | |
| f"Values for {column}", | |
| min_value=_min, | |
| max_value=_max, | |
| value=(_min, _max), | |
| step=step, | |
| ) | |
| df_ = df_[df_[column].between(*user_num_input)] | |
| filtered_columns.append(column) | |
| # Chart_GPT = ChartGPT(df_, title_font, body_font, title_size, | |
| # colors, interpretation, extract_docx, img_path) | |
| with st.status(f"Numerical Distribution: {column}", expanded=False) as stat_: | |
| st.pyplot(plot_hist(df_, column, bins=int(round(len(df_[column].unique())-1)/2))) | |
| elif is_object_dtype(df_[column]): | |
| try: | |
| df_[column] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce') | |
| except Exception: | |
| try: | |
| df_[column] = df_[column].apply(parser.parse) | |
| except Exception: | |
| pass | |
| if is_datetime64_any_dtype(df_[column]): | |
| df_[column] = df_[column].dt.tz_localize(None) | |
| min_date = df_[column].min().date() | |
| max_date = df_[column].max().date() | |
| user_date_input = right.date_input( | |
| f"Values for {column}", | |
| value=(min_date, max_date), | |
| min_value=min_date, | |
| max_value=max_date, | |
| ) | |
| # if len(user_date_input) == 2: | |
| # start_date, end_date = user_date_input | |
| # df_ = df_.loc[df_[column].dt.date.between(start_date, end_date)] | |
| if len(user_date_input) == 2: | |
| user_date_input = tuple(map(pd.to_datetime, user_date_input)) | |
| start_date, end_date = user_date_input | |
| df_ = df_.loc[df_[column].between(start_date, end_date)] | |
| date_column = column | |
| # convert back to str for the map | |
| df_[column] = df_[column].dt.strftime('%Y-%m-%d %H:%M:%S') | |
| if date_column and filtered_columns: | |
| numeric_columns = [col for col in filtered_columns if is_numeric_dtype(df_[col])] | |
| if numeric_columns: | |
| fig = plot_line(df_, date_column, numeric_columns) | |
| #st.pyplot(fig) | |
| # now to deal with categorical columns | |
| categorical_columns = [col for col in filtered_columns if is_categorical_dtype(df_[col])] | |
| if categorical_columns: | |
| fig2 = plot_bar(df_, date_column, categorical_columns[0]) | |
| #st.pyplot(fig2) | |
| with st.status(f"Date Distribution: {column}", expanded=False) as stat: | |
| try: | |
| st.pyplot(fig) | |
| except Exception as e: | |
| st.error(f"Error plotting line chart: {e}") | |
| pass | |
| try: | |
| st.pyplot(fig2) | |
| except Exception as e: | |
| st.error(f"Error plotting bar chart: {e}") | |
| else: | |
| user_text_input = right.text_input( | |
| f"Substring or regex in {column}", | |
| ) | |
| if user_text_input: | |
| df_ = df_[df_[column].astype(str).str.contains(user_text_input)] | |
| # write len of df after filtering with % of original | |
| st.write(f"{len(df_)} rows ({len(df_) / len(df) * 100:.2f}%)") | |
| return df_ | |
| def find_lat_lon_columns(df): | |
| lat_columns = df.columns[df.columns.str.lower().str.contains('lat')] | |
| lon_columns = df.columns[df.columns.str.lower().str.contains('lon|lng')] | |
| if len(lat_columns) > 0 and len(lon_columns) > 0: | |
| return lat_columns[0], lon_columns[0] | |
| else: | |
| return None, None | |
| # Load dataset | |
| data_path = 'parsed_files_distance_embeds.h5' | |
| parsed = load_data(data_path).drop(columns=['embeddings']) | |
| parsed_responses = filter_dataframe(parsed) | |
| st.session_state['parsed_responses'] = parsed_responses | |
| st.dataframe(parsed_responses) | |
| my_dataset = st.file_uploader("Upload Parsed DataFrame", type=["csv", "xlsx"]) | |
| if my_dataset is not None: | |
| if parsed: # save space by cleaning default dataset | |
| parsed = None | |
| try: | |
| if my_dataset.type == "text/csv": | |
| data = pd.read_csv(my_dataset) | |
| elif my_dataset.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": | |
| data = pd.read_excel(my_dataset) | |
| else: | |
| st.error("Unsupported file type. Please upload a CSV, Excel or HD5 file.") | |
| st.stop() | |
| parser = filter_dataframe(data) | |
| st.session_state['parsed_responses'] = parser | |
| st.dataframe(parser) | |
| st.success(f"Successfully loaded and displayed data from {my_dataset.name}") | |
| except Exception as e: | |
| st.error(f"An error occurred while reading the file: {e}") | |
| else: | |
| parsed = load_data(data_path).drop(columns=['embeddings']) | |
| parsed_responses = filter_dataframe(parsed) | |
| st.session_state['parsed_responses'] = parsed_responses | |
| st.dataframe(parsed_responses) | |
| map_1 = KeplerGl(height=800) | |
| powerplant = pd.read_csv('global_power_plant_database.csv') | |
| secret_bases = pd.read_csv('secret_bases.csv') | |
| map_1.add_data( | |
| data=secret_bases, name="secret_bases" | |
| ) | |
| map_1.add_data( | |
| data=powerplant, name='nuclear_powerplants' | |
| ) | |
| if my_dataset is not None : | |
| try: | |
| if my_dataset.type == "text/csv": | |
| data = pd.read_csv(my_dataset) | |
| elif my_dataset.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": | |
| data = pd.read_excel(my_dataset) | |
| else: | |
| st.error("Unsupported file type. Please upload a CSV, Excel or HD5 file.") | |
| st.stop() | |
| parser = filter_dataframe(data) | |
| st.session_state['parsed_responses'] = parser | |
| st.dataframe(parser) | |
| st.success(f"Successfully loaded and displayed data from {my_dataset.name}") | |
| #h3_hex_id_df = pd.read_csv("keplergl/h3_data.csv") | |
| st.session_state['data_loaded'] = True | |
| # Load the base config | |
| with open('military_config.kgl', 'r') as f: | |
| base_config = json.load(f) | |
| with open('uap_config.kgl', 'r') as f: | |
| uap_config = json.load(f) | |
| if parser.columns.str.contains('date').any(): | |
| # Get the date column name | |
| date_column = parser.columns[parser.columns.str.contains('date')].values[0] | |
| # Create a new filter | |
| new_filter = { | |
| "dataId": "uap_sightings", | |
| "name": date_column | |
| } | |
| # Append the new filter to the existing filters | |
| base_config['config']['visState']['filters'].append(new_filter) | |
| # Update the map config | |
| map_1.config = base_config | |
| # Find the latitude and longitude columns in the dataframe | |
| lat_col, lon_col = find_lat_lon_columns(parser) | |
| if lat_col and lon_col: | |
| # try: | |
| # parsed[lat_col] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce') | |
| # parser[lat_col] = parser[lat_col].astype(float) | |
| # parser[lon_col] = parser[lon_col].astype(float) | |
| # except: | |
| # pass | |
| # Update the layer configurations | |
| for layer in uap_config['config']['visState']['layers']: | |
| if 'config' in layer and 'columns' in layer['config']: | |
| if 'lat' in layer['config']['columns']: | |
| layer['config']['columns']['lat'] = lat_col | |
| if 'lng' in layer['config']['columns']: | |
| layer['config']['columns']['lng'] = lon_col | |
| # Now extend the base_config with the updated uap_config layers | |
| base_config['config']['visState']['layers'].extend(uap_config['config']['visState']['layers']) | |
| map_1.config = base_config | |
| else: | |
| base_config['config']['visState']['layers'].extend([layer for layer in uap_config['config']['visState']['layers']]) | |
| map_1.config = base_config | |
| map_1.add_data( | |
| data=parser, name="uap_sightings" | |
| ) | |
| keplergl_static(map_1, center_map=True) | |
| st.session_state['map_generated'] = True | |
| with st.container(border=True): | |
| st.write("Military Base coordinates approximated from: https://www.dpiarchive.com/ (Archive / UFO Related Secret Facilities / Top Priority Documents / Facilities Map and List.pdf)\n\nNuclear Powerplants from: https://datasets.wri.org/dataset/globalpowerplantdatabase") | |
| except Exception as e: | |
| st.error(f"An error occurred while reading the file: {e}") | |
| else: | |
| st.warning("Please upload a file to get started.") | |