Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import json
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import plotly.express as px
|
9 |
+
import plotly.graph_objects as go
|
10 |
+
from sqlalchemy import create_engine
|
11 |
+
from pandasai import SmartDataframe
|
12 |
+
from pandasai.llm import OpenAI
|
13 |
+
import sqlite3
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
import atexit
|
16 |
+
import base64
|
17 |
+
import io
|
18 |
+
|
19 |
+
load_dotenv()
|
20 |
+
|
21 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
22 |
+
|
23 |
+
app_instance = None
|
24 |
+
|
25 |
+
class DataChatApp:
|
26 |
+
def __init__(self):
|
27 |
+
self.df = None
|
28 |
+
self.data_source = None
|
29 |
+
self.llm = OpenAI(api_token=OPENAI_API_KEY)
|
30 |
+
self.smart_df = None
|
31 |
+
self.chat_history = []
|
32 |
+
self.temp_files = []
|
33 |
+
self.db_connection = None
|
34 |
+
global app_instance
|
35 |
+
app_instance = self
|
36 |
+
|
37 |
+
def load_file(self, file):
|
38 |
+
"""Load data from uploaded file"""
|
39 |
+
if file is None:
|
40 |
+
return "No file uploaded", None, None
|
41 |
+
|
42 |
+
file_path = file.name
|
43 |
+
file_name = os.path.basename(file_path)
|
44 |
+
file_ext = os.path.splitext(file_name)[1].lower()
|
45 |
+
|
46 |
+
try:
|
47 |
+
if file_ext == '.csv':
|
48 |
+
self.df = pd.read_csv(file_path)
|
49 |
+
elif file_ext == '.xlsx' or file_ext == '.xls':
|
50 |
+
self.df = pd.read_excel(file_path)
|
51 |
+
elif file_ext == '.json':
|
52 |
+
self.df = pd.read_json(file_path)
|
53 |
+
else:
|
54 |
+
return f"Unsupported file format: {file_ext}", None, None
|
55 |
+
|
56 |
+
# Initialize the SmartDataframe
|
57 |
+
self.smart_df = SmartDataframe(self.df, config={"llm": self.llm})
|
58 |
+
self.data_source = f"File: {file_name}"
|
59 |
+
preview = self.df.head().to_html()
|
60 |
+
info = self._get_dataframe_info()
|
61 |
+
return f"Loaded successfully: {file_name}", preview, info
|
62 |
+
except Exception as e:
|
63 |
+
return f"Error loading file: {str(e)}", None, None
|
64 |
+
|
65 |
+
return self.df
|
66 |
+
|
67 |
+
def connect_database(self, connection_string, query):
|
68 |
+
"""Connect to database using connection string"""
|
69 |
+
try:
|
70 |
+
if connection_string.startswith('sqlite:'):
|
71 |
+
if 'memory' in connection_string:
|
72 |
+
self.db_connection = sqlite3.connect(':memory:')
|
73 |
+
else:
|
74 |
+
db_path = connection_string.replace('sqlite:///', '')
|
75 |
+
self.db_connection = sqlite3.connect(db_path)
|
76 |
+
else:
|
77 |
+
self.db_connection = create_engine(connection_string)
|
78 |
+
|
79 |
+
if not query:
|
80 |
+
return "Please provide a SQL query", None, None
|
81 |
+
|
82 |
+
self.df = pd.read_sql(query, self.db_connection)
|
83 |
+
self.smart_df = SmartDataframe(self.df, config={"llm": self.llm})
|
84 |
+
self.data_source = f"Database: {connection_string.split('://')[0]}"
|
85 |
+
preview = self.df.head().to_html()
|
86 |
+
info = self._get_dataframe_info()
|
87 |
+
return "Database connected successfully", preview, info
|
88 |
+
except Exception as e:
|
89 |
+
return f"Database connection error: {str(e)}", None, None
|
90 |
+
|
91 |
+
return self.df
|
92 |
+
|
93 |
+
def _get_dataframe_info(self):
|
94 |
+
"""Get information about the dataframe"""
|
95 |
+
if self.df is None:
|
96 |
+
return None
|
97 |
+
|
98 |
+
info = {
|
99 |
+
"Shape": self.df.shape,
|
100 |
+
"Columns": list(self.df.columns),
|
101 |
+
"Data Types": {col: str(dtype) for col, dtype in self.df.dtypes.items()},
|
102 |
+
"Missing Values": self.df.isnull().sum().to_dict()
|
103 |
+
}
|
104 |
+
return json.dumps(info, indent=2)
|
105 |
+
|
106 |
+
def chat_with_data(self, query, history):
|
107 |
+
"""Process natural language query against the loaded data"""
|
108 |
+
if self.df is None or self.smart_df is None:
|
109 |
+
return "Please load data first before querying.", history
|
110 |
+
|
111 |
+
if not query:
|
112 |
+
return "Please enter a query.", history
|
113 |
+
|
114 |
+
try:
|
115 |
+
if history is None:
|
116 |
+
history = []
|
117 |
+
|
118 |
+
response = self.smart_df.chat(query)
|
119 |
+
|
120 |
+
if isinstance(response, plt.Figure):
|
121 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
122 |
+
response.savefig(temp_file.name)
|
123 |
+
temp_file.close()
|
124 |
+
self.temp_files.append(temp_file.name)
|
125 |
+
|
126 |
+
response_text = f"<img src='file={temp_file.name}' alt='Visualization' />"
|
127 |
+
|
128 |
+
elif isinstance(response, pd.DataFrame):
|
129 |
+
response_text = f"<div style='overflow-x: auto;'>{response.to_html(index=False)}</div>"
|
130 |
+
else:
|
131 |
+
response_text = str(response)
|
132 |
+
|
133 |
+
history.append({"role": "user", "content": query})
|
134 |
+
history.append({"role": "assistant", "content": response_text})
|
135 |
+
|
136 |
+
return "", history
|
137 |
+
except Exception as e:
|
138 |
+
if not history:
|
139 |
+
history = []
|
140 |
+
history.append({"role": "user", "content": query})
|
141 |
+
history.append({"role": "assistant", "content": f"Error processing query: {str(e)}"})
|
142 |
+
return "", history
|
143 |
+
|
144 |
+
def create_visualization(self, viz_type, x_axis, y_axis, title):
|
145 |
+
"""Create visualization based on user selection"""
|
146 |
+
if self.df is None:
|
147 |
+
return "Please load data first before creating visualizations."
|
148 |
+
|
149 |
+
if not x_axis or (viz_type != 'pie' and viz_type != 'histogram' and not y_axis):
|
150 |
+
return "Please select both X and Y axis for the visualization."
|
151 |
+
|
152 |
+
try:
|
153 |
+
if x_axis not in self.df.columns:
|
154 |
+
return f"Column '{x_axis}' not found in the data."
|
155 |
+
|
156 |
+
if viz_type != 'pie' and viz_type != 'histogram' and y_axis not in self.df.columns:
|
157 |
+
return f"Column '{y_axis}' not found in the data."
|
158 |
+
|
159 |
+
plt.figure(figsize=(10, 6))
|
160 |
+
|
161 |
+
if viz_type == 'bar':
|
162 |
+
plt.bar(self.df[x_axis], self.df[y_axis])
|
163 |
+
plt.xlabel(x_axis)
|
164 |
+
plt.ylabel(y_axis)
|
165 |
+
plt.title(title or f"Bar Chart: {y_axis} by {x_axis}")
|
166 |
+
|
167 |
+
elif viz_type == 'line':
|
168 |
+
plt.plot(self.df[x_axis], self.df[y_axis])
|
169 |
+
plt.xlabel(x_axis)
|
170 |
+
plt.ylabel(y_axis)
|
171 |
+
plt.title(title or f"Line Chart: {y_axis} over {x_axis}")
|
172 |
+
|
173 |
+
elif viz_type == 'scatter':
|
174 |
+
plt.scatter(self.df[x_axis], self.df[y_axis])
|
175 |
+
plt.xlabel(x_axis)
|
176 |
+
plt.ylabel(y_axis)
|
177 |
+
plt.title(title or f"Scatter Plot: {y_axis} vs {x_axis}")
|
178 |
+
|
179 |
+
elif viz_type == 'pie':
|
180 |
+
if y_axis and y_axis in self.df.columns:
|
181 |
+
pie_data = self.df.groupby(x_axis)[y_axis].sum()
|
182 |
+
plt.pie(pie_data, labels=pie_data.index, autopct='%1.1f%%')
|
183 |
+
else:
|
184 |
+
counts = self.df[x_axis].value_counts()
|
185 |
+
plt.pie(counts, labels=counts.index, autopct='%1.1f%%')
|
186 |
+
plt.title(title or f"Pie Chart: Distribution of {x_axis}")
|
187 |
+
|
188 |
+
elif viz_type == 'histogram':
|
189 |
+
plt.hist(self.df[x_axis], bins=20)
|
190 |
+
plt.xlabel(x_axis)
|
191 |
+
plt.ylabel('Frequency')
|
192 |
+
plt.title(title or f"Histogram: Distribution of {x_axis}")
|
193 |
+
|
194 |
+
plt.tight_layout()
|
195 |
+
|
196 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
197 |
+
plt.savefig(temp_file.name, dpi=100, bbox_inches='tight')
|
198 |
+
temp_file.close()
|
199 |
+
self.temp_files.append(temp_file.name)
|
200 |
+
|
201 |
+
with open(temp_file.name, 'rb') as img_file:
|
202 |
+
img_data = base64.b64encode(img_file.read()).decode('utf-8')
|
203 |
+
|
204 |
+
html_content = f"""
|
205 |
+
<div style="text-align: center; padding: 20px; background-color: white; border-radius: 10px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);">
|
206 |
+
<img src="data:image/png;base64,{img_data}" style="max-width: 100%; height: auto;" alt="Visualization">
|
207 |
+
</div>
|
208 |
+
"""
|
209 |
+
|
210 |
+
plt.close()
|
211 |
+
|
212 |
+
return html_content
|
213 |
+
|
214 |
+
except Exception as e:
|
215 |
+
plt.close()
|
216 |
+
return f"Error creating visualization: {str(e)}"
|
217 |
+
|
218 |
+
def generate_summary_cards(self):
|
219 |
+
"""Generate summary cards (KPIs) for numerical columns"""
|
220 |
+
if self.df is None:
|
221 |
+
return "Please load data first before generating summary cards."
|
222 |
+
|
223 |
+
try:
|
224 |
+
num_cols = self.df.select_dtypes(include=[np.number]).columns.tolist()
|
225 |
+
|
226 |
+
if not num_cols:
|
227 |
+
return "No numerical columns found for summary cards."
|
228 |
+
|
229 |
+
cards_html = """
|
230 |
+
<style>
|
231 |
+
.summary-card {
|
232 |
+
background-color: #f5f5f5;
|
233 |
+
border-radius: 5px;
|
234 |
+
padding: 15px;
|
235 |
+
min-width: 200px;
|
236 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
237 |
+
margin: 10px;
|
238 |
+
}
|
239 |
+
.summary-card h3 {
|
240 |
+
margin-top: 0;
|
241 |
+
color: #333 !important;
|
242 |
+
font-weight: bold;
|
243 |
+
}
|
244 |
+
.summary-card p {
|
245 |
+
color: #333 !important;
|
246 |
+
margin: 8px 0;
|
247 |
+
}
|
248 |
+
.summary-card strong {
|
249 |
+
font-weight: bold;
|
250 |
+
color: #333 !important;
|
251 |
+
}
|
252 |
+
.summary-container {
|
253 |
+
display: flex;
|
254 |
+
flex-wrap: wrap;
|
255 |
+
gap: 10px;
|
256 |
+
}
|
257 |
+
</style>
|
258 |
+
<div class="summary-container">
|
259 |
+
"""
|
260 |
+
|
261 |
+
for col in num_cols:
|
262 |
+
mean_val = self.df[col].mean()
|
263 |
+
median_val = self.df[col].median()
|
264 |
+
min_val = self.df[col].min()
|
265 |
+
max_val = self.df[col].max()
|
266 |
+
|
267 |
+
card_html = f"""
|
268 |
+
<div class="summary-card">
|
269 |
+
<h3>{col}</h3>
|
270 |
+
<p><strong>Mean:</strong> {mean_val:.2f}</p>
|
271 |
+
<p><strong>Median:</strong> {median_val:.2f}</p>
|
272 |
+
<p><strong>Min:</strong> {min_val:.2f}</p>
|
273 |
+
<p><strong>Max:</strong> {max_val:.2f}</p>
|
274 |
+
</div>
|
275 |
+
"""
|
276 |
+
cards_html += card_html
|
277 |
+
|
278 |
+
cards_html += "</div>"
|
279 |
+
return cards_html
|
280 |
+
|
281 |
+
except Exception as e:
|
282 |
+
return f"Error generating summary cards: {str(e)}"
|
283 |
+
|
284 |
+
def cleanup(self):
|
285 |
+
"""Clean up temporary files"""
|
286 |
+
for file in self.temp_files:
|
287 |
+
try:
|
288 |
+
if os.path.exists(file):
|
289 |
+
os.unlink(file)
|
290 |
+
except Exception:
|
291 |
+
pass
|
292 |
+
|
293 |
+
if self.db_connection is not None:
|
294 |
+
try:
|
295 |
+
if hasattr(self.db_connection, 'close'):
|
296 |
+
self.db_connection.close()
|
297 |
+
elif hasattr(self.db_connection, 'dispose'):
|
298 |
+
self.db_connection.dispose()
|
299 |
+
except Exception:
|
300 |
+
pass
|
301 |
+
|
302 |
+
def create_interface():
|
303 |
+
app = DataChatApp()
|
304 |
+
|
305 |
+
def update_column_options():
|
306 |
+
if app_instance and app_instance.df is not None:
|
307 |
+
return gr.update(choices=list(app_instance.df.columns))
|
308 |
+
return gr.update(choices=[])
|
309 |
+
|
310 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Data Chat App", css="""
|
311 |
+
.plot-container {width: 100% !important; height: 100% !important;}
|
312 |
+
.js-plotly-plot {min-height: 500px;}
|
313 |
+
.plotly {min-height: 500px;}
|
314 |
+
""") as interface:
|
315 |
+
gr.Markdown("""
|
316 |
+
# GIN Data Chat Application
|
317 |
+
Upload your data file or connect to a database, then chat with your data using natural language!
|
318 |
+
""")
|
319 |
+
|
320 |
+
with gr.Tabs():
|
321 |
+
with gr.TabItem("Load Data"):
|
322 |
+
with gr.Tab("File Upload"):
|
323 |
+
file_input = gr.File(label="Upload CSV, Excel, or JSON file")
|
324 |
+
file_upload_button = gr.Button("Load File")
|
325 |
+
file_result = gr.Textbox(label="Result")
|
326 |
+
|
327 |
+
with gr.Tab("Database Connection"):
|
328 |
+
conn_str = gr.Textbox(
|
329 |
+
label="Connection String",
|
330 |
+
placeholder="E.g., sqlite:///data.db, postgresql://user:pass@localhost/db"
|
331 |
+
)
|
332 |
+
query = gr.Textbox(
|
333 |
+
label="SQL Query",
|
334 |
+
placeholder="SELECT * FROM your_table LIMIT 1000"
|
335 |
+
)
|
336 |
+
db_connect_button = gr.Button("Connect to Database")
|
337 |
+
db_result = gr.Textbox(label="Result")
|
338 |
+
|
339 |
+
preview = gr.HTML(label="Data Preview")
|
340 |
+
info = gr.JSON(label="Data Information")
|
341 |
+
|
342 |
+
with gr.TabItem("Chat with Data"):
|
343 |
+
chat_interface = gr.Chatbot(height=400, type="messages")
|
344 |
+
query_input = gr.Textbox(
|
345 |
+
label="Ask a question about your data",
|
346 |
+
placeholder="E.g., Show me the trend of sales over time",
|
347 |
+
lines=2
|
348 |
+
)
|
349 |
+
chat_button = gr.Button("Ask")
|
350 |
+
|
351 |
+
with gr.TabItem("Visualize Data"):
|
352 |
+
with gr.Row():
|
353 |
+
with gr.Column(scale=1):
|
354 |
+
viz_type = gr.Dropdown(
|
355 |
+
choices=["bar", "line", "scatter", "pie", "histogram"],
|
356 |
+
label="Visualization Type",
|
357 |
+
value="bar" # Set a default value
|
358 |
+
)
|
359 |
+
x_axis = gr.Dropdown(label="X-Axis / Category")
|
360 |
+
y_axis = gr.Dropdown(label="Y-Axis / Values (Optional for Pie & Histogram)")
|
361 |
+
viz_title = gr.Textbox(label="Chart Title (Optional)")
|
362 |
+
viz_button = gr.Button("Generate Visualization", variant="primary")
|
363 |
+
|
364 |
+
with gr.Column(scale=2):
|
365 |
+
viz_output = gr.HTML(label="Visualization", value="<div style='width:100%; height:500px; display:flex; justify-content:center; align-items:center; color:#666; font-size:16px;'>Your visualization will appear here</div>")
|
366 |
+
|
367 |
+
with gr.TabItem("Summary Stats"):
|
368 |
+
summary_button = gr.Button("Generate Summary Cards")
|
369 |
+
summary_output = gr.HTML(label="Summary Statistics")
|
370 |
+
|
371 |
+
# Set up event handlers
|
372 |
+
file_upload_button.click(
|
373 |
+
app.load_file,
|
374 |
+
inputs=[file_input],
|
375 |
+
outputs=[file_result, preview, info]
|
376 |
+
).then(
|
377 |
+
update_column_options,
|
378 |
+
inputs=None,
|
379 |
+
outputs=[x_axis]
|
380 |
+
).then(
|
381 |
+
update_column_options,
|
382 |
+
inputs=None,
|
383 |
+
outputs=[y_axis]
|
384 |
+
)
|
385 |
+
|
386 |
+
db_connect_button.click(
|
387 |
+
app.connect_database,
|
388 |
+
inputs=[conn_str, query],
|
389 |
+
outputs=[db_result, preview, info]
|
390 |
+
).then(
|
391 |
+
update_column_options,
|
392 |
+
inputs=None,
|
393 |
+
outputs=[x_axis]
|
394 |
+
).then(
|
395 |
+
update_column_options,
|
396 |
+
inputs=None,
|
397 |
+
outputs=[y_axis]
|
398 |
+
)
|
399 |
+
|
400 |
+
chat_button.click(
|
401 |
+
app.chat_with_data,
|
402 |
+
inputs=[query_input, chat_interface],
|
403 |
+
outputs=[query_input, chat_interface]
|
404 |
+
)
|
405 |
+
|
406 |
+
query_input.submit(
|
407 |
+
app.chat_with_data,
|
408 |
+
inputs=[query_input, chat_interface],
|
409 |
+
outputs=[query_input, chat_interface]
|
410 |
+
)
|
411 |
+
|
412 |
+
|
413 |
+
viz_button.click(
|
414 |
+
app.create_visualization,
|
415 |
+
inputs=[viz_type, x_axis, y_axis, viz_title],
|
416 |
+
outputs=[viz_output]
|
417 |
+
)
|
418 |
+
|
419 |
+
summary_button.click(
|
420 |
+
app.generate_summary_cards,
|
421 |
+
outputs=[summary_output]
|
422 |
+
)
|
423 |
+
|
424 |
+
# Register cleanup function for when the app closes
|
425 |
+
# The on_close method is no longer available in newer Gradio versions
|
426 |
+
# Instead, we'll clean up temp files when the server restarts
|
427 |
+
app.cleanup() # Clean up any previous temp files
|
428 |
+
|
429 |
+
return interface
|
430 |
+
|
431 |
+
if __name__ == "__main__":
|
432 |
+
import atexit
|
433 |
+
app = DataChatApp()
|
434 |
+
atexit.register(app.cleanup)
|
435 |
+
|
436 |
+
interface = create_interface()
|
437 |
+
interface.launch(share=True)
|