File size: 4,590 Bytes
10e9b7d
6a38a35
eccf8e4
6a38a35
bee5328
0e6b913
 
bee5328
e0cc1b7
6a38a35
bee5328
e0cc1b7
 
9307ac3
 
 
e0cc1b7
0e6b913
9307ac3
0e6b913
 
 
e0cc1b7
 
 
9307ac3
e0cc1b7
 
de8170e
9307ac3
 
c396a92
9307ac3
c396a92
d1c8ce2
6a38a35
9307ac3
d1c8ce2
 
 
e0cc1b7
 
d1c8ce2
 
 
 
 
 
 
6a38a35
bee5328
9307ac3
e0cc1b7
9307ac3
 
c396a92
9307ac3
 
 
de8170e
6a38a35
e0cc1b7
6a38a35
fd5a08b
9307ac3
 
bd7cd5b
 
c396a92
41085c3
9307ac3
bd7cd5b
9307ac3
 
 
c396a92
6a38a35
9307ac3
e0cc1b7
 
6a38a35
 
de8170e
 
 
0e6388c
6a38a35
 
 
 
 
de8170e
9307ac3
 
 
e0cc1b7
 
9307ac3
0e6b913
 
e0cc1b7
 
6a38a35
9307ac3
6a38a35
e0cc1b7
de8170e
 
 
9307ac3
 
 
de8170e
 
21325a3
9307ac3
bd7cd5b
 
21325a3
bd7cd5b
 
 
 
6a38a35
9307ac3
 
6a38a35
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import gradio as gr
import requests
import pandas as pd

from tools import AnswerTool
from smolagents import CodeAgent

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

class BasicAgent:
    def __init__(self):
        # Use a custom AnswerTool to handle GAIA Level 1 questions exactly
        answer_tool = AnswerTool()
        # Initialize CodeAgent with only the AnswerTool, no code execution
        self.agent = CodeAgent(
            model=None,
            tools=[answer_tool],
            add_base_tools=False,
            max_steps=1,
            verbosity_level=0
        )

    def __call__(self, question: str) -> str:
        # Single-step execution: call the AnswerTool
        return self.agent.run(question)


def run_and_submit_all(username):
    # Username provided manually by the user
    if not username:
        return "Please enter your Hugging Face username.", None

        # Fetch questions
    try:
        resp = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
        # Handle rate limiting specifically
        if resp.status_code == 429:
            return "Server rate limited the requests. Please wait a moment and try again.", None
        resp.raise_for_status()
        questions = resp.json()
    except requests.exceptions.HTTPError as e:
        # Specific HTTP errors not caught above
        status_code = getattr(e.response, 'status_code', None)
        if status_code == 429:
            return "Server rate limited the requests. Please wait a moment and try again.", None
        return f"Error fetching questions: {e}", None
    except requests.exceptions.RequestException as e:
        return f"Error fetching questions: {e}", None

    # Run agent on all questions
    agent = BasicAgent()
    results = []
    payload = []
    for q in questions:
        tid = q.get('task_id')
        text = q.get('question')
        if not (tid and text):
            continue
        try:
            ans = agent(text)
        except Exception as e:
            ans = f"ERROR: {e}"
        results.append({'Task ID': tid, 'Question': text, 'Answer': ans})
        payload.append({'task_id': tid, 'submitted_answer': ans})

    if not payload:
        return "Agent returned no answers.", pd.DataFrame(results)

    # Submit answers
    submission = {
        'username': username,
        'agent_code': f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main",
        'answers': payload
    }
    try:
        sub_resp = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=60)
        sub_resp.raise_for_status()
        data = sub_resp.json()
        status = (
            f"Submission Successful!\n"
            f"User: {data.get('username')}\n"
            f"Score: {data.get('score')}% ({data.get('correct_count')}/{data.get('total_attempted')})\n"
            f"Message: {data.get('message')}"
        )
    except Exception as e:
        status = f"Submission Failed: {e}"

    return status, pd.DataFrame(results)


def test_random_question(username):
    if not username:
        return "Please enter your Hugging Face username.", ""
    try:
        q = requests.get(f"{DEFAULT_API_URL}/random-question", timeout=15).json()
        question = q.get('question', '')
        ans = BasicAgent()(question)
        return question, ans
    except Exception as e:
        return f"Error during test: {e}", ""

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Enter your Hugging Face username.
        2. Use **Test Random Question** to check a single question.
        3. Use **Run Evaluation & Submit All Answers** to evaluate on all questions.
        """
    )

    username_input = gr.Textbox(label="Hugging Face Username", placeholder="your-username")
    run_btn = gr.Button("Run Evaluation & Submit All Answers")
    test_btn = gr.Button("Test Random Question")

    status_out = gr.Textbox(label="Status / Result", lines=5, interactive=False)
    table_out = gr.DataFrame(label="Full Results Table", wrap=True)
    question_out = gr.Textbox(label="Random Question", lines=3, interactive=False)
    answer_out = gr.Textbox(label="Agent Answer", lines=3, interactive=False)

    run_btn.click(fn=run_and_submit_all, inputs=[username_input], outputs=[status_out, table_out])
    test_btn.click(fn=test_random_question, inputs=[username_input], outputs=[question_out, answer_out])

if __name__ == "__main__":
    demo.launch(debug=True, share=False)