Ubik80's picture
fixes
0e6b913 verified
raw
history blame
4.5 kB
import os
import gradio as gr
import requests
import pandas as pd
from tools import AnswerTool
from smolagents import CodeAgent
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class BasicAgent:
def __init__(self):
# Initialize CodeAgent with a single custom AnswerTool to handle GAIA Level 1 questions
self.agent = CodeAgent(
model=None,
tools=[AnswerTool()],
add_base_tools=False,
max_steps=1,
verbosity_level=0
)
def __call__(self, question: str) -> str:
# Directly run the agent on the question (single-step tool invocation)
return self.agent.run(question)
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetch all GAIA Level 1 questions, run the BasicAgent, submit answers, and display results.
"""
space_id = os.getenv("SPACE_ID")
if not profile:
return "Please login to Hugging Face with the login button.", None
username = getattr(profile, "username", None) or getattr(profile, "name", None)
if not username:
return "Login error: username not found.", None
# 1. Fetch questions
questions_url = f"{DEFAULT_API_URL}/questions"
try:
resp = requests.get(questions_url, timeout=15)
resp.raise_for_status()
questions = resp.json()
except Exception as e:
return f"Error fetching questions: {e}", None
# 2. Run agent on each question
agent = BasicAgent()
results, payload = [], []
for q in questions:
task_id = q.get("task_id")
text = q.get("question")
if not task_id or not text:
continue
try:
ans = agent(text)
except Exception as e:
ans = f"ERROR: {e}"
results.append({"Task ID": task_id, "Question": text, "Answer": ans})
payload.append({"task_id": task_id, "submitted_answer": ans})
if not payload:
return "Agent returned no answers.", pd.DataFrame(results)
# 3. Submit answers
submit_url = f"{DEFAULT_API_URL}/submit"
submission = {
"username": username.strip(),
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
"answers": payload
}
try:
sub_resp = requests.post(submit_url, json=submission, timeout=60)
sub_resp.raise_for_status()
data = sub_resp.json()
status = (
f"Submission Successful!\n"
f"User: {data.get('username')}\n"
f"Score: {data.get('score')}% ({data.get('correct_count')}/{data.get('total_attempted')})\n"
f"Message: {data.get('message')}"
)
except Exception as e:
status = f"Submission Failed: {e}"
return status, pd.DataFrame(results)
def test_random_question(profile: gr.OAuthProfile | None):
"""
Fetch a single random GAIA question and return the agent's answer.
"""
if not profile:
return "Please login to Hugging Face with the login button.", ""
try:
q = requests.get(f"{DEFAULT_API_URL}/random-question", timeout=15).json()
question = q.get("question", "")
ans = BasicAgent()(question)
return question, ans
except Exception as e:
return f"Error during test: {e}", ""
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone this space and define your agent logic in `tools.py`.
2. Log in with your Hugging Face account using the login button below.
3. Use **Run Evaluation & Submit All Answers** or **Test Random Question**.
"""
)
login = gr.LoginButton()
run_btn = gr.Button("Run Evaluation & Submit All Answers")
test_btn = gr.Button("Test Random Question")
status_out = gr.Textbox(label="Status / Result", lines=5, interactive=False)
table_out = gr.DataFrame(label="Full Results Table", wrap=True)
question_out = gr.Textbox(label="Random Question", lines=3, interactive=False)
answer_out = gr.Textbox(label="Agent Answer", lines=3, interactive=False)
# Wire buttons to callbacks; LoginButton auto-passes profile
run_btn.click(fn=run_and_submit_all, inputs=[login], outputs=[status_out, table_out])
test_btn.click(fn=test_random_question, inputs=[login], outputs=[question_out, answer_out])
if __name__ == "__main__":
demo.launch(debug=True, share=False)