|
import os |
|
import threading |
|
import uvicorn |
|
from fastapi import FastAPI, Request |
|
from pydantic import BaseModel |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
from datasets import load_dataset |
|
from fastapi.responses import JSONResponse |
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
MODEL_BASE = "UcsTurkey/kanarya-750m-fixed" |
|
FINE_TUNE_ZIP = "trained_model_000_100.zip" |
|
FINE_TUNE_REPO = "UcsTurkey/trained-zips" |
|
RAG_DATA_FILE = "merged_dataset_000_100.parquet" |
|
RAG_DATA_REPO = "UcsTurkey/turkish-general-culture-tokenized" |
|
|
|
|
|
app = FastAPI() |
|
chat_history = [] |
|
|
|
class Message(BaseModel): |
|
user_input: str |
|
|
|
@app.get("/") |
|
def health(): |
|
return {"status": "ok"} |
|
|
|
@app.post("/chat") |
|
def chat(msg: Message): |
|
user_input = msg.user_input.strip() |
|
if not user_input: |
|
return {"error": "Boş giriş"} |
|
|
|
full_prompt = "" |
|
for turn in chat_history: |
|
full_prompt += f"Kullanıcı: {turn['user']}\nAsistan: {turn['bot']}\n" |
|
full_prompt += f"Kullanıcı: {user_input}\nAsistan:" |
|
|
|
result = pipe(full_prompt, max_new_tokens=200, do_sample=True, temperature=0.7) |
|
answer = result[0]["generated_text"][len(full_prompt):].strip() |
|
|
|
chat_history.append({"user": user_input, "bot": answer}) |
|
return {"answer": answer, "chat_history": chat_history} |
|
|
|
|
|
|
|
def setup_model(): |
|
global pipe |
|
from huggingface_hub import hf_hub_download |
|
import zipfile |
|
|
|
print("📦 Fine-tune zip indiriliyor...") |
|
zip_path = hf_hub_download( |
|
repo_id=FINE_TUNE_REPO, |
|
filename=FINE_TUNE_ZIP, |
|
repo_type="model", |
|
token=HF_TOKEN |
|
) |
|
extract_dir = "/app/extracted" |
|
os.makedirs(extract_dir, exist_ok=True) |
|
with zipfile.ZipFile(zip_path, "r") as zip_ref: |
|
zip_ref.extractall(extract_dir) |
|
|
|
print("🔁 Tokenizer ve model yükleniyor...") |
|
tokenizer = AutoTokenizer.from_pretrained(os.path.join(extract_dir, "output")) |
|
model = AutoModelForCausalLM.from_pretrained(os.path.join(extract_dir, "output")) |
|
|
|
print("📚 RAG dataseti yükleniyor...") |
|
rag = load_dataset(RAG_DATA_REPO, data_files=RAG_DATA_FILE, split="train", token=HF_TOKEN) |
|
print(f"🔍 RAG boyutu: {len(rag)}") |
|
|
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
|
|
threading.Thread(target=setup_model, daemon=True).start() |
|
|
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|