fine-tune-inference-test / fine_tune_inference_test.py
ciyidogan's picture
Update fine_tune_inference_test.py
cee75e6 verified
raw
history blame
5.24 kB
import os
import threading
import uvicorn
from fastapi import FastAPI
from fastapi.responses import HTMLResponse, JSONResponse
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
from datasets import load_dataset
from peft import PeftModel
import torch
from huggingface_hub import hf_hub_download
import zipfile
from datetime import datetime
# ✅ Zamanlı log fonksiyonu (flush destekli)
def log(message):
timestamp = datetime.now().strftime("%H:%M:%S")
print(f"[{timestamp}] {message}")
os.sys.stdout.flush()
# ✅ Sabitler
HF_TOKEN = os.environ.get("HF_TOKEN")
MODEL_BASE = "UcsTurkey/kanarya-750m-fixed"
FINE_TUNE_ZIP = "trained_model_002_005.zip"
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
RAG_DATA_FILE = "merged_dataset_000_100.parquet"
RAG_DATA_REPO = "UcsTurkey/turkish-general-culture-tokenized"
USE_RAG = False # ✅ RAG kullanımını opsiyonel hale getiren sabit
app = FastAPI()
chat_history = []
pipe = None # global text-generation pipeline
class Message(BaseModel):
user_input: str
@app.get("/health")
def health():
return {"status": "ok"}
@app.get("/start", response_class=HTMLResponse)
def root():
return """
<html>
<head><title>Fine-Tune Chat</title></head>
<body>
<h2>📘 Fine-tune Chat Test</h2>
<textarea id=\"input\" rows=\"4\" cols=\"60\" placeholder=\"Bir şeyler yaz...\"></textarea><br><br>
<button onclick=\"send()\">Gönder</button>
<pre id=\"output\"></pre>
<script>
async function send() {
const input = document.getElementById(\"input\").value;
const res = await fetch("/chat", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ user_input: input })
});
const data = await res.json();
document.getElementById("output").innerText = data.answer || data.error || "Hata oluştu.";
}
</script>
</body>
</html>
"""
@app.post("/chat")
def chat(msg: Message):
try:
global pipe
if pipe is None:
log("🚫 Hata: Model henüz yüklenmedi.")
return {"error": "Model yüklenmedi. Lütfen birkaç saniye sonra tekrar deneyin."}
user_input = msg.user_input.strip()
if not user_input:
return {"error": "Boş giriş"}
full_prompt = ""
for turn in chat_history:
full_prompt += f"Kullanıcı: {turn['user']}\nAsistan: {turn['bot']}\n"
full_prompt += f"Kullanıcı: {user_input}\nAsistan:"
result = pipe(full_prompt, max_new_tokens=200, do_sample=True, temperature=0.7)
answer = result[0]["generated_text"][len(full_prompt):].strip()
chat_history.append({"user": user_input, "bot": answer})
log(f"🗨️ Soru: {user_input} → Yanıt: {answer[:60]}...")
return {"answer": answer, "chat_history": chat_history}
except Exception as e:
log(f"❌ /chat sırasında hata oluştu: {e}")
return {"error": str(e)}
def setup_model():
try:
global pipe
log("📦 Fine-tune zip indiriliyor...")
zip_path = hf_hub_download(
repo_id=FINE_TUNE_REPO,
filename=FINE_TUNE_ZIP,
repo_type="model",
token=HF_TOKEN
)
extract_dir = "/app/extracted"
os.makedirs(extract_dir, exist_ok=True)
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_dir)
log("📂 Zip başarıyla açıldı.")
log("🔁 Tokenizer yükleniyor...")
tokenizer = AutoTokenizer.from_pretrained(os.path.join(extract_dir, "output"))
log("🧠 Base model indiriliyor...")
base_model = AutoModelForCausalLM.from_pretrained(
MODEL_BASE,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
log("➕ LoRA adapter uygulanıyor...")
peft_model = PeftModel.from_pretrained(base_model, os.path.join(extract_dir, "output"))
if USE_RAG:
log("📚 RAG dataseti yükleniyor...")
rag = load_dataset(
RAG_DATA_REPO,
data_files=RAG_DATA_FILE,
split="train",
token=HF_TOKEN
)
log(f"🔍 RAG boyutu: {len(rag)}")
log("🚀 Pipeline oluşturuluyor...")
pipe = TextGenerationPipeline(
model=peft_model.model,
tokenizer=tokenizer,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device=0 if torch.cuda.is_available() else -1
)
log("✅ Model ve pipeline başarıyla yüklendi.")
except Exception as e:
log(f"❌ setup_model() sırasında hata oluştu: {e}")
# ✅ Uygulama başlangıcı
threading.Thread(target=setup_model, daemon=True).start()
log("⌛ Model yükleniyor, istekler için hazır olunacak...")
while True:
try:
import time
time.sleep(60)
except Exception as e:
log(f"❌ Ana bekleme döngüsünde hata: {e}")