Update fine_tune_inference_test.py
Browse files- fine_tune_inference_test.py +11 -6
fine_tune_inference_test.py
CHANGED
|
@@ -2,18 +2,18 @@ import os
|
|
| 2 |
import threading
|
| 3 |
import uvicorn
|
| 4 |
from fastapi import FastAPI, Request
|
| 5 |
-
from fastapi.responses import HTMLResponse
|
| 6 |
from pydantic import BaseModel
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 8 |
from datasets import load_dataset
|
| 9 |
-
from
|
| 10 |
|
| 11 |
# ✅ Sabitler
|
| 12 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 13 |
MODEL_BASE = "UcsTurkey/kanarya-750m-fixed"
|
| 14 |
-
FINE_TUNE_ZIP = "trained_model_000_100.zip"
|
| 15 |
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
|
| 16 |
-
RAG_DATA_FILE = "merged_dataset_000_100.parquet"
|
| 17 |
RAG_DATA_REPO = "UcsTurkey/turkish-general-culture-tokenized"
|
| 18 |
|
| 19 |
# ✅ FastAPI app
|
|
@@ -85,9 +85,14 @@ def setup_model():
|
|
| 85 |
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
| 86 |
zip_ref.extractall(extract_dir)
|
| 87 |
|
| 88 |
-
print("🔁 Tokenizer
|
| 89 |
tokenizer = AutoTokenizer.from_pretrained(os.path.join(extract_dir, "output"))
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
print("📚 RAG dataseti yükleniyor...")
|
| 93 |
rag = load_dataset(RAG_DATA_REPO, data_files=RAG_DATA_FILE, split="train", token=HF_TOKEN)
|
|
|
|
| 2 |
import threading
|
| 3 |
import uvicorn
|
| 4 |
from fastapi import FastAPI, Request
|
| 5 |
+
from fastapi.responses import HTMLResponse, JSONResponse
|
| 6 |
from pydantic import BaseModel
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 8 |
from datasets import load_dataset
|
| 9 |
+
from peft import PeftModel
|
| 10 |
|
| 11 |
# ✅ Sabitler
|
| 12 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 13 |
MODEL_BASE = "UcsTurkey/kanarya-750m-fixed"
|
| 14 |
+
FINE_TUNE_ZIP = "trained_model_000_100.zip"
|
| 15 |
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
|
| 16 |
+
RAG_DATA_FILE = "merged_dataset_000_100.parquet"
|
| 17 |
RAG_DATA_REPO = "UcsTurkey/turkish-general-culture-tokenized"
|
| 18 |
|
| 19 |
# ✅ FastAPI app
|
|
|
|
| 85 |
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
| 86 |
zip_ref.extractall(extract_dir)
|
| 87 |
|
| 88 |
+
print("🔁 Tokenizer yükleniyor...")
|
| 89 |
tokenizer = AutoTokenizer.from_pretrained(os.path.join(extract_dir, "output"))
|
| 90 |
+
|
| 91 |
+
print("🧠 Base model indiriliyor...")
|
| 92 |
+
base_model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype="auto")
|
| 93 |
+
|
| 94 |
+
print("➕ LoRA adapter uygulanıyor...")
|
| 95 |
+
model = PeftModel.from_pretrained(base_model, os.path.join(extract_dir, "output"))
|
| 96 |
|
| 97 |
print("📚 RAG dataseti yükleniyor...")
|
| 98 |
rag = load_dataset(RAG_DATA_REPO, data_files=RAG_DATA_FILE, split="train", token=HF_TOKEN)
|