File size: 3,779 Bytes
16134a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import traceback
from transformers import AutoTokenizer, AutoModelForCausalLM
from log import log
from pydantic import BaseModel

class Message(BaseModel):
    user_input: str

class LLMModel:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.eos_token_id = None

    def setup(self, s_config, project_config):
        try:
            log("🧠 LLMModel setup() başladı")
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            log(f"📡 Kullanılan cihaz: {device}")

            model_base = project_config["model_base"]

            if s_config.work_mode == "hfcloud":
                token = s_config.get_auth_token()
                log(f"📦 Hugging Face cloud modeli yükleniyor: {model_base}")
                self.tokenizer = AutoTokenizer.from_pretrained(model_base, use_auth_token=token, use_fast=False)
                self.model = AutoModelForCausalLM.from_pretrained(model_base, use_auth_token=token, torch_dtype=torch.float32).to(device)

            elif s_config.work_mode == "cloud":
                log(f"📦 Diğer cloud ortamından model indiriliyor: {model_base}")
                self.tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                self.model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float32).to(device)

            elif s_config.work_mode == "on-prem":
                log(f"📦 On-prem model path: {model_base}")
                self.tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                self.model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float32).to(device)

            else:
                raise Exception(f"Bilinmeyen work_mode: {s_config.work_mode}")

            self.tokenizer.pad_token = self.tokenizer.pad_token or self.tokenizer.eos_token
            self.model.config.pad_token_id = self.tokenizer.pad_token_id
            self.eos_token_id = self.tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
            self.model.eval()

            log("✅ LLMModel setup() başarıyla tamamlandı.")
        except Exception as e:
            log(f"❌ LLMModel setup() hatası: {e}")
            traceback.print_exc()

    async def generate_response(self, text, project_config):
        messages = [{"role": "user", "content": text}]
        encodeds = self.tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
        input_ids = encodeds.to(self.model.device)
        attention_mask = (input_ids != self.tokenizer.pad_token_id).long()

        with torch.no_grad():
            output = self.model.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_new_tokens=128,
                do_sample=project_config["use_sampling"],
                eos_token_id=self.eos_token_id,
                pad_token_id=self.tokenizer.pad_token_id,
                return_dict_in_generate=True,
                output_scores=True
            )

        if not project_config["use_sampling"]:
            scores = torch.stack(output.scores, dim=1)
            probs = torch.nn.functional.softmax(scores[0], dim=-1)
            top_conf = probs.max().item()
        else:
            top_conf = None

        decoded = self.tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip()
        for tag in ["assistant", "<|im_start|>assistant"]:
            start = decoded.find(tag)
            if start != -1:
                decoded = decoded[start + len(tag):].strip()
                break
        return decoded, top_conf