File size: 13,923 Bytes
78b5a88
a532986
78b5a88
a532986
78b5a88
a532986
 
9c58077
78b5a88
a532986
78b5a88
 
 
a532986
78b5a88
3586948
 
 
 
 
 
a532986
3586948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ab11dd
3586948
5ab11dd
3586948
 
5ab11dd
3586948
5ab11dd
3586948
5ab11dd
3586948
5ab11dd
3586948
5ab11dd
3586948
5ab11dd
3586948
5ab11dd
3586948
5ab11dd
3586948
5ab11dd
3586948
5ab11dd
3586948
 
5ab11dd
 
3586948
9c58077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d846f5e
 
5789d1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d846f5e
9c58077
5789d1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89d0af3
 
 
 
 
 
 
308dbba
89d0af3
9c58077
59e181e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2178ca6
59e181e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89d0af3
 
 
 
 
 
 
 
9c58077
89d0af3
59e181e
 
89d0af3
59e181e
 
 
 
 
89d0af3
59e181e
89d0af3
59e181e
 
 
 
 
89d0af3
59e181e
 
 
9c58077
59e181e
 
89d0af3
59e181e
 
89d0af3
 
 
 
 
 
 
c4954b5
 
 
 
 
 
 
 
 
 
 
ae45ffa
c4954b5
 
 
 
 
 
ae45ffa
c4954b5
 
 
ae45ffa
c4954b5
ae45ffa
c4954b5
 
 
ae45ffa
 
 
c4954b5
 
 
 
 
 
 
 
 
78b5a88
3586948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
"""
Google Cloud Speech-to-Text Implementation - Simple Batch Mode
"""
from typing import Optional, List
from datetime import datetime
import io
import wave
import struct
from google.cloud import speech
from google.cloud.speech import RecognitionConfig, RecognitionAudio
from utils.logger import log_info, log_error, log_debug, log_warning
from .stt_interface import STTInterface, STTConfig, TranscriptionResult


class GoogleSTT(STTInterface):
    def __init__(self, credentials_path: Optional[str] = None):
        """
        Initialize Google STT
        Args:
            credentials_path: Path to service account JSON file (optional if using default credentials)
        """
        try:
            # Initialize client
            if credentials_path:
                self.client = speech.SpeechClient.from_service_account_file(credentials_path)
                log_info(f"✅ Google STT initialized with service account: {credentials_path}")
            else:
                # Use default credentials (ADC)
                self.client = speech.SpeechClient()
                log_info("✅ Google STT initialized with default credentials")
            
        except Exception as e:
            log_error(f"❌ Failed to initialize Google STT: {str(e)}")
            raise
    
    def _map_language_code(self, language: str) -> str:
        """Map language codes to Google format"""
        # Google uses BCP-47 language codes
        language_map = {
            "tr": "tr-TR",
            "tr-TR": "tr-TR",
            "en": "en-US",
            "en-US": "en-US", 
            "en-GB": "en-GB",
            "de": "de-DE",
            "de-DE": "de-DE",
            "fr": "fr-FR",
            "fr-FR": "fr-FR",
            "es": "es-ES",
            "es-ES": "es-ES",
            "it": "it-IT",
            "it-IT": "it-IT",
            "pt": "pt-BR",
            "pt-BR": "pt-BR",
            "ru": "ru-RU",
            "ru-RU": "ru-RU",
            "ja": "ja-JP",
            "ja-JP": "ja-JP",
            "ko": "ko-KR",
            "ko-KR": "ko-KR",
            "zh": "zh-CN",
            "zh-CN": "zh-CN",
            "ar": "ar-SA",
            "ar-SA": "ar-SA",
        }
        
        # Default to the language itself if not in map
        return language_map.get(language, language)
    
    def _analyze_audio_content(self, audio_data: bytes):
        """Analyze audio content for debugging"""
        try:
            if len(audio_data) < 100:
                log_warning(f"⚠️ Very short audio data: {len(audio_data)} bytes")
                return
            
            # Convert to samples
            samples = struct.unpack(f'{len(audio_data)//2}h', audio_data)
            total_samples = len(samples)
            
            # Basic stats
            non_zero_samples = [s for s in samples if s != 0]
            zero_count = total_samples - len(non_zero_samples)
            zero_percentage = (zero_count / total_samples) * 100
            
            log_info(f"🔍 Audio stats: {total_samples} total samples, {zero_count} zeros ({zero_percentage:.1f}%)")
            
            if non_zero_samples:
                avg_amplitude = sum(abs(s) for s in non_zero_samples) / len(non_zero_samples)
                max_amplitude = max(abs(s) for s in non_zero_samples)
                log_info(f"🔍 Non-zero stats: avg={avg_amplitude:.1f}, max={max_amplitude}")
                
                # Section analysis
                section_size = total_samples // 10
                log_info(f"🔍 Section analysis (each {section_size} samples):")
                
                for i in range(10):
                    start = i * section_size
                    end = min((i + 1) * section_size, total_samples)
                    section = samples[start:end]
                    
                    section_non_zero = [s for s in section if s != 0]
                    section_zeros = len(section) - len(section_non_zero)
                    section_zero_pct = (section_zeros / len(section)) * 100
                    
                    if section_non_zero:
                        section_max = max(abs(s) for s in section_non_zero)
                        section_avg = sum(abs(s) for s in section_non_zero) / len(section_non_zero)
                        log_info(f"Section {i+1}: max={section_max}, avg={section_avg:.1f}, zeros={section_zero_pct:.1f}%")
                
                # Find where speech starts (first significant activity)
                speech_threshold = 1000  # Minimum amplitude to consider as speech
                speech_start = None
                for i, sample in enumerate(samples):
                    if abs(sample) > speech_threshold:
                        speech_start = i
                        break
                
                if speech_start is not None:
                    log_info(f"🎤 Speech detected starting at sample {speech_start} ({speech_start/16000:.2f}s)")
                else:
                    log_warning(f"⚠️ No clear speech signal detected (threshold: {speech_threshold})")
            else:
                log_warning(f"⚠️ All samples are zero - no audio content")
                
        except Exception as e:
            log_error(f"❌ Error analyzing audio: {e}")

    def _trim_silence(self, audio_data: bytes) -> bytes:
        """Trim silence from beginning and end of audio"""
        try:
            if len(audio_data) < 100:
                return audio_data
            
            # Convert to samples
            samples = list(struct.unpack(f'{len(audio_data)//2}h', audio_data))
            
            # Silence threshold - daha düşük bir threshold kullan
            silence_threshold = 200  # Daha düşük threshold
            
            # Find first non-silent sample
            start_idx = 0
            for i, sample in enumerate(samples):
                if abs(sample) > silence_threshold:
                    start_idx = i
                    break
            
            # Find last non-silent sample
            end_idx = len(samples) - 1
            for i in range(len(samples) - 1, -1, -1):
                if abs(samples[i]) > silence_threshold:
                    end_idx = i
                    break
            
            # Ensure we have some audio
            if start_idx >= end_idx:
                log_warning("⚠️ No audio content above silence threshold")
                return audio_data
            
            # Add small padding (250ms = 4000 samples at 16kHz)
            padding = 2000  # 125ms padding
            start_idx = max(0, start_idx - padding)
            end_idx = min(len(samples) - 1, end_idx + padding)
            
            # Extract trimmed audio
            trimmed_samples = samples[start_idx:end_idx + 1]
            
            log_info(f"🔧 Silence trimming: {len(samples)}{len(trimmed_samples)} samples")
            log_info(f"🔧 Trimmed duration: {len(trimmed_samples)/16000:.2f}s")
            
            # Convert back to bytes
            trimmed_audio = struct.pack(f'{len(trimmed_samples)}h', *trimmed_samples)
            
            return trimmed_audio
            
        except Exception as e:
            log_error(f"❌ Silence trimming failed: {e}")
            return audio_data
            
    async def transcribe(self, audio_data: bytes, config: STTConfig) -> Optional[TranscriptionResult]:
            """Transcribe audio data using Google Cloud Speech API"""
            try:
                # Check if we have audio to transcribe
                if not audio_data:
                    log_warning("⚠️ No audio data provided")
                    return None
                
                log_info(f"📊 Transcribing {len(audio_data)} bytes of audio")
                
                # ✅ Raw audio'yu direkt WAV olarak kaydet ve test et
                import tempfile
                import os
                import wave
                
                # Raw audio'yu WAV olarak kaydet
                raw_wav_file = f"/tmp/raw_audio_{datetime.now().strftime('%H%M%S')}.wav"
                
                with wave.open(raw_wav_file, 'wb') as wav_file:
                    wav_file.setnchannels(1)
                    wav_file.setsampwidth(2)
                    wav_file.setframerate(config.sample_rate)
                    wav_file.writeframes(audio_data)
                
                log_info(f"🎯 RAW audio saved as WAV: {raw_wav_file}")
                
                # Test koduyla test et
                try:
                    import subprocess
                    result = subprocess.run([
                        'python', './test_single_wav.py', raw_wav_file
                    ], capture_output=True, text=True, timeout=30)
                    
                    log_info(f"🔍 Raw WAV test result: {result.stdout}")
                    if result.stderr:
                        log_error(f"🔍 Raw WAV test error: {result.stderr}")
                        
                    # Eğer raw audio çalışıyorsa, sorun trimming'te
                    if "Transcript:" in result.stdout:
                        log_info("✅ RAW audio works! Problem is in our processing.")
                    else:
                        log_error("❌ Even RAW audio doesn't work - problem in frontend!")
                        
                except Exception as e:
                    log_warning(f"Could not run raw audio test: {e}")
                
                # ✅ Audio analizi
                self._analyze_audio_content(audio_data)
                
                # ✅ Silence trimming ekle
                trimmed_audio = self._trim_silence(audio_data)
                
                if len(trimmed_audio) < 8000:  # 0.5 saniyeden az
                    log_warning("⚠️ Audio too short after trimming")
                    return None
                
                # Trimmed audio'yu da kaydet
                trimmed_wav_file = f"/tmp/trimmed_audio_{datetime.now().strftime('%H%M%S')}.wav"
                
                with wave.open(trimmed_wav_file, 'wb') as wav_file:
                    wav_file.setnchannels(1)
                    wav_file.setsampwidth(2)
                    wav_file.setframerate(config.sample_rate)
                    wav_file.writeframes(trimmed_audio)
                
                log_info(f"🎯 TRIMMED audio saved as WAV: {trimmed_wav_file}")
                
                # Trimmed audio'yu da test et
                try:
                    result = subprocess.run([
                        'python', '/app/test_single_wav.py', trimmed_wav_file
                    ], capture_output=True, text=True, timeout=30)
                    
                    log_info(f"🔍 Trimmed WAV test result: {result.stdout}")
                    if result.stderr:
                        log_error(f"🔍 Trimmed WAV test error: {result.stderr}")
                        
                except Exception as e:
                    log_warning(f"Could not run trimmed audio test: {e}")
                
                # Sonuç olarak Google'a gönderme
                log_info("❌ Skipping Google API call for debugging")
                return None
                
            except Exception as e:
                log_error(f"❌ Error during transcription: {str(e)}")
                import traceback
                log_error(f"Traceback: {traceback.format_exc()}")
                return None

    def _create_wav_like_test(self, audio_data: bytes, sample_rate: int) -> bytes:
        """Create WAV exactly like test code using wave module"""
        try:
            import tempfile
            import os
            import wave
            
            # Geçici dosya oluştur
            temp_wav = tempfile.mktemp(suffix='.wav')
            
            try:
                # Wave file oluştur - test kodundaki gibi
                with wave.open(temp_wav, 'wb') as wav_file:
                    wav_file.setnchannels(1)      # Mono
                    wav_file.setsampwidth(2)      # 16-bit
                    wav_file.setframerate(sample_rate)  # 16kHz
                    wav_file.writeframes(audio_data)
                
                # Dosyayı geri oku
                with open(temp_wav, 'rb') as f:
                    wav_data = f.read()
                
                log_info(f"🔧 WAV created using wave module: {len(wav_data)} bytes")
                
                # Debug: Wave file'ı kontrol et
                with wave.open(temp_wav, 'rb') as wav_file:
                    log_info(f"🔧 Wave validation: {wav_file.getnchannels()}ch, {wav_file.getframerate()}Hz, {wav_file.getnframes()} frames")
                
                return wav_data
                
            finally:
                # Cleanup
                if os.path.exists(temp_wav):
                    os.unlink(temp_wav)
                    
        except Exception as e:
            log_error(f"❌ Wave module WAV creation failed: {e}")
            # Fallback to manual method
            return self._convert_to_wav_proper(audio_data, sample_rate)
    
    def get_supported_languages(self) -> List[str]:
        """Get list of supported language codes"""
        # Google Cloud Speech-to-Text supported languages (partial list)
        return [
            "tr-TR", "en-US", "en-GB", "en-AU", "en-CA", "en-IN",
            "es-ES", "es-MX", "es-AR", "fr-FR", "fr-CA", "de-DE",
            "it-IT", "pt-BR", "pt-PT", "ru-RU", "ja-JP", "ko-KR",
            "zh-CN", "zh-TW", "ar-SA", "ar-EG", "hi-IN", "nl-NL",
            "pl-PL", "sv-SE", "da-DK", "no-NO", "fi-FI", "el-GR",
            "he-IL", "th-TH", "vi-VN", "id-ID", "ms-MY", "fil-PH"
        ]
    
    def get_provider_name(self) -> str:
        """Get provider name"""
        return "google"