Spaces:
Paused
Paused
| import torch, traceback | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification | |
| from log import log | |
| from pydantic import BaseModel | |
| model = None | |
| tokenizer = None | |
| eos_token_id = None | |
| class Message(BaseModel): | |
| user_input: str | |
| def setup_model(s_config): | |
| global model, tokenizer, eos_token_id | |
| try: | |
| log("🧠 setup_model() başladı") | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| log(f"📡 Kullanılan cihaz: {device}") | |
| tokenizer = AutoTokenizer.from_pretrained(s_config.MODEL_BASE, use_fast=False) | |
| log("📦 Tokenizer yüklendi. Ana model indiriliyor...") | |
| model = AutoModelForCausalLM.from_pretrained(s_config.MODEL_BASE, torch_dtype=torch.float32).to(device) | |
| log("📦 Ana model indirildi ve yüklendi. eval() çağırılıyor...") | |
| tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token | |
| model.config.pad_token_id = tokenizer.pad_token_id | |
| eos_token_id = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0] | |
| model.eval() | |
| log("✅ Ana model eval() çağrıldı") | |
| log(f"📦 Intent modeli indiriliyor: {s_config.INTENT_MODEL_ID}") | |
| _ = AutoTokenizer.from_pretrained(s_config.INTENT_MODEL_ID) | |
| _ = AutoModelForSequenceClassification.from_pretrained(s_config.INTENT_MODEL_ID) | |
| log("✅ Intent modeli önbelleğe alındı.") | |
| log("✔️ Model başarıyla yüklendi ve sohbet için hazır.") | |
| except Exception as e: | |
| log(f"❌ setup_model() hatası: {e}") | |
| traceback.print_exc() | |
| async def generate_response(text, app_config): | |
| messages = [{"role": "user", "content": text}] | |
| encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True) | |
| eos_token = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0] | |
| input_ids = encodeds.to(model.device) | |
| attention_mask = (input_ids != tokenizer.pad_token_id).long() | |
| with torch.no_grad(): | |
| output = model.generate( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| max_new_tokens=128, | |
| do_sample=app_config.USE_SAMPLING, | |
| eos_token_id=eos_token, | |
| pad_token_id=tokenizer.pad_token_id, | |
| return_dict_in_generate=True, | |
| output_scores=True | |
| ) | |
| if not app_config.USE_SAMPLING: | |
| scores = torch.stack(output.scores, dim=1) | |
| probs = torch.nn.functional.softmax(scores[0], dim=-1) | |
| top_conf = probs.max().item() | |
| else: | |
| top_conf = None | |
| decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip() | |
| for tag in ["assistant", "<|im_start|>assistant"]: | |
| start = decoded.find(tag) | |
| if start != -1: | |
| decoded = decoded[start + len(tag):].strip() | |
| break | |
| return decoded, top_conf |