Spaces:
Running
Running
import torch, traceback | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification | |
from log import log | |
from pydantic import BaseModel | |
_model = None | |
_tokenizer = None | |
_eos_token_id = None | |
def get_model(): | |
return _model | |
def get_tokenizer(): | |
return _tokenizer | |
def get_eos_token_id(): | |
return _eos_token_id | |
class Message(BaseModel): | |
user_input: str | |
def setup_model(s_config): | |
global _model, _tokenizer, _eos_token_id | |
try: | |
log("🧠 setup_model() başladı") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
log(f"📡 Kullanılan cihaz: {device}") | |
_tokenizer = AutoTokenizer.from_pretrained(s_config.MODEL_BASE, use_fast=False) | |
log("📦 Tokenizer yüklendi. Ana model indiriliyor...") | |
_model = AutoModelForCausalLM.from_pretrained(s_config.MODEL_BASE, torch_dtype=torch.float32).to(device) | |
log("📦 Ana model indirildi ve yüklendi. eval() çağırılıyor...") | |
_tokenizer.pad_token = _tokenizer.pad_token or _tokenizer.eos_token | |
_model.config.pad_token_id = _tokenizer.pad_token_id | |
_eos_token_id = _tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0] | |
_model.eval() | |
log("✅ Ana model eval() çağrıldı") | |
log(f"📦 Intent modeli indiriliyor: {s_config.INTENT_MODEL_ID}") | |
_ = AutoTokenizer.from_pretrained(s_config.INTENT_MODEL_ID) | |
_ = AutoModelForSequenceClassification.from_pretrained(s_config.INTENT_MODEL_ID) | |
log("✅ Intent modeli önbelleğe alındı.") | |
log("✔️ Model başarıyla yüklendi ve sohbet için hazır.") | |
except Exception as e: | |
log(f"❌ setup_model() hatası: {e}") | |
traceback.print_exc() | |
async def generate_response(text, app_config): | |
model = get_model() | |
tokenizer = get_tokenizer() | |
eos_token_id = get_eos_token_id() | |
messages = [{"role": "user", "content": text}] | |
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True) | |
input_ids = encodeds.to(model.device) | |
attention_mask = (input_ids != tokenizer.pad_token_id).long() | |
with torch.no_grad(): | |
output = model.generate( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
max_new_tokens=128, | |
do_sample=app_config.USE_SAMPLING, | |
eos_token_id=eos_token_id, | |
pad_token_id=tokenizer.pad_token_id, | |
return_dict_in_generate=True, | |
output_scores=True | |
) | |
if not app_config.USE_SAMPLING: | |
scores = torch.stack(output.scores, dim=1) | |
probs = torch.nn.functional.softmax(scores[0], dim=-1) | |
top_conf = probs.max().item() | |
else: | |
top_conf = None | |
decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip() | |
for tag in ["assistant", "<|im_start|>assistant"]: | |
start = decoded.find(tag) | |
if start != -1: | |
decoded = decoded[start + len(tag):].strip() | |
break | |
return decoded, top_conf | |