Spaces:
Paused
Paused
| from fastapi import Request | |
| from fastapi.responses import JSONResponse | |
| import traceback | |
| import random | |
| from intent_utils import extract_parameters, validate_variable_formats, detect_intent | |
| from intent_api import execute_intent | |
| from log import log | |
| from llm_model import Message, LLMModel | |
| async def handle_chat(msg: Message, request: Request, app, service_config, session, llm_model: LLMModel): | |
| try: | |
| user_input = msg.user_input.strip() | |
| project_name = session.project_name | |
| project_config = service_config.get_project_llm_config(project_name) | |
| project_intents = service_config.get_project_intents(project_name) | |
| if llm_model.model is None or llm_model.tokenizer is None: | |
| return {"error": f"{project_name} için model yüklenmedi."} | |
| detected_intent, intent_conf = await detect_intent(user_input, project_name) | |
| log(f"🎯 Intent tespit edildi: {detected_intent}, Confidence: {intent_conf:.2f}") | |
| current_intent = session.last_intent | |
| awaiting_variable = session.awaiting_variable | |
| if ( | |
| awaiting_variable and | |
| detected_intent and | |
| detected_intent != current_intent and | |
| intent_conf > project_config["intent_confidence_treshold"] | |
| ): | |
| log("🧹 Konu değişikliği algılandı → context sıfırlanıyor") | |
| session.awaiting_variable = None | |
| session.variables = {} | |
| session.last_intent = detected_intent | |
| current_intent = detected_intent | |
| intent_is_valid = ( | |
| detected_intent and | |
| intent_conf > project_config["intent_confidence_treshold"] and | |
| any(i["name"] == detected_intent for i in project_intents) | |
| ) | |
| log(f"✅ Intent geçerli mi?: {intent_is_valid}") | |
| if intent_is_valid: | |
| session.last_intent = detected_intent | |
| intent_def = next(i for i in project_intents if i["name"] == detected_intent) | |
| pattern_list = intent_def.get("variables", []) | |
| variable_format_map = intent_def.get("variable_formats", {}) | |
| data_formats = service_config.data_formats | |
| if awaiting_variable: | |
| extracted = extract_parameters(pattern_list, user_input) | |
| for p in extracted: | |
| if p["key"] == awaiting_variable: | |
| session.variables[awaiting_variable] = p["value"] | |
| session.awaiting_variable = None | |
| log(f"✅ Awaiting parametre tamamlandı: {awaiting_variable} = {p['value']}") | |
| break | |
| extracted = extract_parameters(pattern_list, user_input) | |
| variables = {p["key"]: p["value"] for p in extracted} | |
| session.variables.update(variables) | |
| is_valid, validation_errors = validate_variable_formats(session.variables, variable_format_map, data_formats) | |
| log(f"📛 Validasyon hataları: {validation_errors}") | |
| if not is_valid: | |
| session.awaiting_variable = list(validation_errors.keys())[0] | |
| return {"response": list(validation_errors.values())[0]} | |
| expected_vars = list(variable_format_map.keys()) | |
| missing_vars = [v for v in expected_vars if v not in session.variables] | |
| log(f"📌 Beklenen parametreler: {expected_vars}, Eksik: {missing_vars}") | |
| if missing_vars: | |
| session.awaiting_variable = missing_vars[0] | |
| return {"response": f"Lütfen {missing_vars[0]} bilgisini belirtir misiniz?"} | |
| log("🚀 execute_intent() çağrılıyor...") | |
| result = execute_intent( | |
| detected_intent, | |
| user_input, | |
| session.__dict__, | |
| {i["name"]: i for i in project_intents}, | |
| data_formats | |
| ) | |
| if "reply" in result: | |
| return {"reply": result["reply"]} | |
| elif "errors" in result: | |
| return {"response": list(result["errors"].values())[0]} | |
| else: | |
| return {"response": random.choice(project_config["fallback_answers"])} | |
| log("🤖 execute_intent çağrılmadı → LLM fallback devrede") | |
| session.awaiting_variable = None | |
| session.variables = {} | |
| response, response_conf = await llm_model.generate_response(user_input, project_config) | |
| if response_conf is not None and response_conf < project_config["llm_confidence_treshold"]: | |
| return {"response": random.choice(project_config["fallback_answers"])} | |
| return {"response": response} | |
| except Exception as e: | |
| traceback.print_exc() | |
| return JSONResponse(content={"error": str(e)}, status_code=500) |