Spaces:
Paused
Paused
import os | |
import torch | |
import json | |
import shutil | |
import re | |
import traceback | |
from datasets import Dataset | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments, default_data_collator, AutoConfig | |
from log import log | |
from core import INTENT_MODELS | |
async def detect_intent(text, project_name): | |
project_model = INTENT_MODELS.get(project_name) | |
if not project_model: | |
raise Exception(f"'{project_name}' için intent modeli yüklenmemiş.") | |
tokenizer = project_model["tokenizer"] | |
model = project_model["model"] | |
label2id = project_model["label2id"] | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
outputs = model(**inputs) | |
predicted_id = outputs.logits.argmax(dim=-1).item() | |
detected_intent = [k for k, v in label2id.items() if v == predicted_id][0] | |
confidence = outputs.logits.softmax(dim=-1).max().item() | |
return detected_intent, confidence | |
def background_training(project_name, intents, model_id, output_path, confidence_threshold): | |
try: | |
log(f"🔧 Intent eğitimi başlatıldı (proje: {project_name})") | |
texts, labels, label2id = [], [], {} | |
for idx, intent in enumerate(intents): | |
label2id[intent["name"]] = idx | |
for ex in intent["examples"]: | |
texts.append(ex) | |
labels.append(idx) | |
dataset = Dataset.from_dict({"text": texts, "label": labels}) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
config = AutoConfig.from_pretrained(model_id) | |
config.problem_type = "single_label_classification" | |
config.num_labels = len(label2id) | |
model = AutoModelForSequenceClassification.from_pretrained(model_id, config=config) | |
tokenized_data = {"input_ids": [], "attention_mask": [], "label": []} | |
for row in dataset: | |
out = tokenizer(row["text"], truncation=True, padding="max_length", max_length=128) | |
tokenized_data["input_ids"].append(out["input_ids"]) | |
tokenized_data["attention_mask"].append(out["attention_mask"]) | |
tokenized_data["label"].append(row["label"]) | |
tokenized = Dataset.from_dict(tokenized_data) | |
tokenized.set_format(type="torch", columns=["input_ids", "attention_mask", "label"]) | |
if os.path.exists(output_path): | |
shutil.rmtree(output_path) | |
os.makedirs(output_path, exist_ok=True) | |
trainer = Trainer( | |
model=model, | |
args=TrainingArguments(output_path, per_device_train_batch_size=4, num_train_epochs=3, logging_steps=10, save_strategy="no", report_to=[]), | |
train_dataset=tokenized, | |
data_collator=default_data_collator | |
) | |
trainer.train() | |
log("🔧 Başarı raporu üretiliyor...") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
input_ids_tensor = torch.tensor(tokenized["input_ids"]).to(device) | |
attention_mask_tensor = torch.tensor(tokenized["attention_mask"]).to(device) | |
with torch.no_grad(): | |
outputs = model(input_ids=input_ids_tensor, attention_mask=attention_mask_tensor) | |
predictions = outputs.logits.argmax(dim=-1).tolist() | |
actuals = tokenized["label"] | |
counts, correct = {}, {} | |
for pred, actual in zip(predictions, actuals): | |
intent_name = list(label2id.keys())[list(label2id.values()).index(actual)] | |
counts[intent_name] = counts.get(intent_name, 0) + 1 | |
if pred == actual: | |
correct[intent_name] = correct.get(intent_name, 0) + 1 | |
for intent_name, total in counts.items(): | |
accuracy = correct.get(intent_name, 0) / total | |
log(f"📊 Intent '{intent_name}' doğruluk: {accuracy:.2f} — {total} örnek") | |
if accuracy < confidence_threshold or total < 5: | |
log(f"⚠️ Yetersiz performanslı intent: '{intent_name}' — Doğruluk: {accuracy:.2f}, Örnek: {total}") | |
model.save_pretrained(output_path) | |
tokenizer.save_pretrained(output_path) | |
with open(os.path.join(output_path, "label2id.json"), "w") as f: | |
json.dump(label2id, f) | |
INTENT_MODELS[project_name] = { | |
"model": model, | |
"tokenizer": tokenizer, | |
"label2id": label2id | |
} | |
log(f"✅ Intent eğitimi tamamlandı ve '{project_name}' modeli yüklendi.") | |
except Exception as e: | |
log(f"❌ Intent eğitimi hatası: {e}") | |
traceback.print_exc() | |