Spaces:
Paused
Paused
Create stt_base.py
Browse files- stt/stt_base.py +206 -0
stt/stt_base.py
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Base STT Implementation
|
| 3 |
+
======================
|
| 4 |
+
Common audio processing and validation for all STT providers
|
| 5 |
+
"""
|
| 6 |
+
import struct
|
| 7 |
+
from typing import Optional, Tuple, List
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from abc import ABC, abstractmethod
|
| 10 |
+
|
| 11 |
+
from .stt_interface import STTInterface, STTConfig, TranscriptionResult
|
| 12 |
+
from utils.logger import log_info, log_error, log_debug, log_warning
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class STTBase(STTInterface, ABC):
|
| 16 |
+
"""Base class for all STT implementations with common audio processing"""
|
| 17 |
+
|
| 18 |
+
def __init__(self):
|
| 19 |
+
super().__init__()
|
| 20 |
+
|
| 21 |
+
async def transcribe(self, audio_data: bytes, config: STTConfig) -> Optional[TranscriptionResult]:
|
| 22 |
+
"""Main transcription method with preprocessing"""
|
| 23 |
+
try:
|
| 24 |
+
# 1. Validate input
|
| 25 |
+
if not audio_data:
|
| 26 |
+
log_warning("β οΈ No audio data provided")
|
| 27 |
+
return None
|
| 28 |
+
|
| 29 |
+
log_info(f"π Transcribing {len(audio_data)} bytes of audio")
|
| 30 |
+
|
| 31 |
+
# 2. Analyze and validate audio
|
| 32 |
+
analysis_result = self._analyze_audio(audio_data, config.sample_rate)
|
| 33 |
+
if not analysis_result.is_valid:
|
| 34 |
+
log_warning(f"β οΈ Audio validation failed: {analysis_result.reason}")
|
| 35 |
+
return None
|
| 36 |
+
|
| 37 |
+
# 3. Preprocess audio if needed
|
| 38 |
+
processed_audio = self._preprocess_audio(audio_data, config)
|
| 39 |
+
|
| 40 |
+
# 4. Call provider-specific implementation
|
| 41 |
+
return await self._transcribe_impl(processed_audio, config, analysis_result)
|
| 42 |
+
|
| 43 |
+
except Exception as e:
|
| 44 |
+
log_error(f"β Error during transcription: {str(e)}")
|
| 45 |
+
import traceback
|
| 46 |
+
log_error(f"Traceback: {traceback.format_exc()}")
|
| 47 |
+
return None
|
| 48 |
+
|
| 49 |
+
@abstractmethod
|
| 50 |
+
async def _transcribe_impl(self, audio_data: bytes, config: STTConfig, analysis: 'AudioAnalysis') -> Optional[TranscriptionResult]:
|
| 51 |
+
"""Provider-specific transcription implementation"""
|
| 52 |
+
pass
|
| 53 |
+
|
| 54 |
+
def _analyze_audio(self, audio_data: bytes, sample_rate: int) -> 'AudioAnalysis':
|
| 55 |
+
"""Analyze audio quality and content"""
|
| 56 |
+
try:
|
| 57 |
+
samples = struct.unpack(f'{len(audio_data)//2}h', audio_data)
|
| 58 |
+
total_samples = len(samples)
|
| 59 |
+
|
| 60 |
+
# Basic statistics
|
| 61 |
+
non_zero_samples = [s for s in samples if s != 0]
|
| 62 |
+
zero_count = total_samples - len(non_zero_samples)
|
| 63 |
+
|
| 64 |
+
if non_zero_samples:
|
| 65 |
+
avg_amplitude = sum(abs(s) for s in non_zero_samples) / len(non_zero_samples)
|
| 66 |
+
max_amplitude = max(abs(s) for s in non_zero_samples)
|
| 67 |
+
else:
|
| 68 |
+
avg_amplitude = 0
|
| 69 |
+
max_amplitude = 0
|
| 70 |
+
|
| 71 |
+
log_info(f"π Audio stats: {total_samples} total samples, {zero_count} zeros ({zero_count/total_samples:.1%})")
|
| 72 |
+
log_info(f"π Non-zero stats: avg={avg_amplitude:.1f}, max={max_amplitude}")
|
| 73 |
+
|
| 74 |
+
# Section analysis (10 sections)
|
| 75 |
+
section_size = total_samples // 10
|
| 76 |
+
sections = []
|
| 77 |
+
|
| 78 |
+
for i in range(10):
|
| 79 |
+
start_idx = i * section_size
|
| 80 |
+
end_idx = (i + 1) * section_size if i < 9 else total_samples
|
| 81 |
+
section = samples[start_idx:end_idx]
|
| 82 |
+
|
| 83 |
+
section_non_zero = [s for s in section if s != 0]
|
| 84 |
+
section_max = max(abs(s) for s in section_non_zero) if section_non_zero else 0
|
| 85 |
+
section_avg = sum(abs(s) for s in section_non_zero) / len(section_non_zero) if section_non_zero else 0
|
| 86 |
+
zero_ratio = (len(section) - len(section_non_zero)) / len(section)
|
| 87 |
+
|
| 88 |
+
sections.append({
|
| 89 |
+
'max': section_max,
|
| 90 |
+
'avg': section_avg,
|
| 91 |
+
'zero_ratio': zero_ratio
|
| 92 |
+
})
|
| 93 |
+
|
| 94 |
+
log_info(f" Section {i+1}: max={section_max}, avg={section_avg:.1f}, zeros={zero_ratio:.1%}")
|
| 95 |
+
|
| 96 |
+
# Find speech start
|
| 97 |
+
speech_start_idx = self._find_speech_start(samples, sample_rate)
|
| 98 |
+
speech_start_time = speech_start_idx / sample_rate if speech_start_idx >= 0 else -1
|
| 99 |
+
|
| 100 |
+
if speech_start_idx >= 0:
|
| 101 |
+
log_info(f"π€ Speech detected starting at sample {speech_start_idx} ({speech_start_time:.2f}s)")
|
| 102 |
+
else:
|
| 103 |
+
log_warning("β οΈ No speech detected above threshold in entire audio")
|
| 104 |
+
|
| 105 |
+
# Validation
|
| 106 |
+
is_valid = True
|
| 107 |
+
reason = ""
|
| 108 |
+
|
| 109 |
+
if max_amplitude < 100:
|
| 110 |
+
is_valid = False
|
| 111 |
+
reason = f"Audio appears silent: max_amplitude={max_amplitude}"
|
| 112 |
+
elif zero_count / total_samples > 0.95:
|
| 113 |
+
is_valid = False
|
| 114 |
+
reason = f"Audio is mostly zeros: {zero_count/total_samples:.1%}"
|
| 115 |
+
elif speech_start_idx < 0:
|
| 116 |
+
is_valid = False
|
| 117 |
+
reason = "No speech detected"
|
| 118 |
+
|
| 119 |
+
return AudioAnalysis(
|
| 120 |
+
total_samples=total_samples,
|
| 121 |
+
sample_rate=sample_rate,
|
| 122 |
+
zero_count=zero_count,
|
| 123 |
+
avg_amplitude=avg_amplitude,
|
| 124 |
+
max_amplitude=max_amplitude,
|
| 125 |
+
sections=sections,
|
| 126 |
+
speech_start_idx=speech_start_idx,
|
| 127 |
+
speech_start_time=speech_start_time,
|
| 128 |
+
is_valid=is_valid,
|
| 129 |
+
reason=reason
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
except Exception as e:
|
| 133 |
+
log_error(f"Audio analysis failed: {e}")
|
| 134 |
+
return AudioAnalysis(
|
| 135 |
+
total_samples=0,
|
| 136 |
+
sample_rate=sample_rate,
|
| 137 |
+
is_valid=False,
|
| 138 |
+
reason=f"Analysis failed: {e}"
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
def _find_speech_start(self, samples: List[int], sample_rate: int, threshold: int = 500) -> int:
|
| 142 |
+
"""Find the starting point of speech in audio"""
|
| 143 |
+
window_size = 100
|
| 144 |
+
|
| 145 |
+
for i in range(0, len(samples) - window_size, window_size):
|
| 146 |
+
window = samples[i:i + window_size]
|
| 147 |
+
rms = (sum(s * s for s in window) / window_size) ** 0.5
|
| 148 |
+
|
| 149 |
+
if rms > threshold:
|
| 150 |
+
return i
|
| 151 |
+
|
| 152 |
+
return -1
|
| 153 |
+
|
| 154 |
+
def _preprocess_audio(self, audio_data: bytes, config: STTConfig) -> bytes:
|
| 155 |
+
"""Preprocess audio if needed (can be overridden by providers)"""
|
| 156 |
+
# Default: no preprocessing
|
| 157 |
+
return audio_data
|
| 158 |
+
|
| 159 |
+
def _clean_audio_silence(self, audio_data: bytes, threshold: int = 50) -> bytes:
|
| 160 |
+
"""Remove leading/trailing silence"""
|
| 161 |
+
try:
|
| 162 |
+
samples = struct.unpack(f'{len(audio_data)//2}h', audio_data)
|
| 163 |
+
|
| 164 |
+
# Find first non-silent sample
|
| 165 |
+
start_idx = 0
|
| 166 |
+
for i, sample in enumerate(samples):
|
| 167 |
+
if abs(sample) > threshold:
|
| 168 |
+
start_idx = i
|
| 169 |
+
break
|
| 170 |
+
|
| 171 |
+
# Find last non-silent sample
|
| 172 |
+
end_idx = len(samples) - 1
|
| 173 |
+
for i in range(len(samples) - 1, -1, -1):
|
| 174 |
+
if abs(samples[i]) > threshold:
|
| 175 |
+
end_idx = i
|
| 176 |
+
break
|
| 177 |
+
|
| 178 |
+
# Add padding
|
| 179 |
+
start_idx = max(0, start_idx - 100)
|
| 180 |
+
end_idx = min(len(samples) - 1, end_idx + 100)
|
| 181 |
+
|
| 182 |
+
# Convert back
|
| 183 |
+
cleaned_samples = samples[start_idx:end_idx + 1]
|
| 184 |
+
cleaned_audio = struct.pack(f'{len(cleaned_samples)}h', *cleaned_samples)
|
| 185 |
+
|
| 186 |
+
log_debug(f"Audio cleaning: {len(audio_data)} β {len(cleaned_audio)} bytes")
|
| 187 |
+
return cleaned_audio
|
| 188 |
+
|
| 189 |
+
except Exception as e:
|
| 190 |
+
log_warning(f"Audio cleaning failed: {e}, using original")
|
| 191 |
+
return audio_data
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
@dataclass
|
| 195 |
+
class AudioAnalysis:
|
| 196 |
+
"""Audio analysis results"""
|
| 197 |
+
total_samples: int = 0
|
| 198 |
+
sample_rate: int = 16000
|
| 199 |
+
zero_count: int = 0
|
| 200 |
+
avg_amplitude: float = 0.0
|
| 201 |
+
max_amplitude: int = 0
|
| 202 |
+
sections: List[dict] = field(default_factory=list)
|
| 203 |
+
speech_start_idx: int = -1
|
| 204 |
+
speech_start_time: float = -1.0
|
| 205 |
+
is_valid: bool = False
|
| 206 |
+
reason: str = ""
|