Spaces:
Running
Running
Update inference_test.py
Browse files- inference_test.py +6 -23
inference_test.py
CHANGED
@@ -4,7 +4,7 @@ from fastapi.responses import HTMLResponse, JSONResponse
|
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
import intent_test_runner
|
6 |
from service_config import ServiceConfig
|
7 |
-
import intent,
|
8 |
from log import log
|
9 |
|
10 |
s_config = ServiceConfig()
|
@@ -12,14 +12,11 @@ s_config.setup_environment()
|
|
12 |
|
13 |
# === FastAPI
|
14 |
app = FastAPI()
|
15 |
-
chat_history = []
|
16 |
|
17 |
@app.get("/")
|
18 |
def health():
|
19 |
return {"status": "ok"}
|
20 |
|
21 |
-
import uuid # yukarıda zaten eklendiğini varsayıyoruz
|
22 |
-
|
23 |
@app.post("/run_tests", status_code=202)
|
24 |
def run_tests():
|
25 |
log("🚦 /run_tests çağrıldı. Testler başlatılıyor...")
|
@@ -28,7 +25,6 @@ def run_tests():
|
|
28 |
|
29 |
@app.get("/start", response_class=HTMLResponse)
|
30 |
def root():
|
31 |
-
# Yeni session ID üret
|
32 |
session_id = str(uuid.uuid4())
|
33 |
session_info = {
|
34 |
"session_id": session_id,
|
@@ -37,15 +33,10 @@ def root():
|
|
37 |
"last_intent": None,
|
38 |
"awaiting_variable": None
|
39 |
}
|
40 |
-
|
41 |
-
# Session store başlatıldıysa ekle
|
42 |
if not hasattr(app.state, "session_store"):
|
43 |
app.state.session_store = {}
|
44 |
app.state.session_store[session_id] = session_info
|
45 |
-
|
46 |
log(f"🌐 /start ile yeni session başlatıldı: {session_id}")
|
47 |
-
|
48 |
-
# HTML + session_id gömülü
|
49 |
return f"""
|
50 |
<html><body>
|
51 |
<h2>Turkcell LLM Chat</h2>
|
@@ -56,7 +47,6 @@ def root():
|
|
56 |
<script>
|
57 |
const sessionId = "{session_id}";
|
58 |
localStorage.setItem("session_id", sessionId);
|
59 |
-
|
60 |
async function send() {{
|
61 |
const input = document.getElementById("input").value;
|
62 |
const res = await fetch('/chat', {{
|
@@ -78,10 +68,8 @@ def root():
|
|
78 |
def start_chat():
|
79 |
if llm_model.model is None or llm_model.tokenizer is None:
|
80 |
return {"error": "Model yüklenmedi."}
|
81 |
-
|
82 |
if not hasattr(app.state, "session_store"):
|
83 |
app.state.session_store = {}
|
84 |
-
|
85 |
session_id = str(uuid.uuid4())
|
86 |
session_info = {
|
87 |
"session_id": session_id,
|
@@ -134,7 +122,6 @@ async def chat(msg: llm_model.Message, request: Request):
|
|
134 |
if llm_model.model is None or llm_model.tokenizer is None:
|
135 |
return {"error": "Model yüklenmedi."}
|
136 |
|
137 |
-
# 🎯 Intent modeli varsa her mesajda intent tespiti yap
|
138 |
detected_intent, intent_conf = None, 0.0
|
139 |
if s_config.INTENT_MODEL:
|
140 |
detected_intent, intent_conf = await intent.detect_intent(user_input)
|
@@ -143,7 +130,6 @@ async def chat(msg: llm_model.Message, request: Request):
|
|
143 |
current_intent = session.get("last_intent")
|
144 |
awaiting_variable = session.get("awaiting_variable")
|
145 |
|
146 |
-
# 🧹 Kullanıcı farklı intent başlattıysa → context sıfırlanır
|
147 |
if (
|
148 |
awaiting_variable and
|
149 |
detected_intent and
|
@@ -156,7 +142,6 @@ async def chat(msg: llm_model.Message, request: Request):
|
|
156 |
session["last_intent"] = detected_intent
|
157 |
current_intent = detected_intent
|
158 |
|
159 |
-
# 🎯 Eğer intent geçerliyse ve tanımlıysa, intent’e göre işleyişe gir
|
160 |
if (
|
161 |
detected_intent and
|
162 |
intent_conf > s_config.INTENT_CONFIDENCE_THRESHOLD and
|
@@ -167,7 +152,6 @@ async def chat(msg: llm_model.Message, request: Request):
|
|
167 |
data_formats = s_config.DATA_FORMATS
|
168 |
variable_format_map = definition.get("variable_formats", {})
|
169 |
|
170 |
-
# 🧩 Awaiting variable varsa onu çözmeye çalış
|
171 |
if awaiting_variable:
|
172 |
extracted = intent.extract_parameters(pattern_list, user_input)
|
173 |
for p in extracted:
|
@@ -177,12 +161,10 @@ async def chat(msg: llm_model.Message, request: Request):
|
|
177 |
log(f"✅ Awaiting parametre tamamlandı: {awaiting_variable} = {p['value']}")
|
178 |
break
|
179 |
|
180 |
-
# 🔍 Tüm parametreleri yeniden değerlendir
|
181 |
extracted = intent.extract_parameters(pattern_list, user_input)
|
182 |
variables = {p["key"]: p["value"] for p in extracted}
|
183 |
session.setdefault("variables", {}).update(variables)
|
184 |
|
185 |
-
# ✔️ Validasyon
|
186 |
is_valid, validation_errors = intent.validate_variable_formats(session["variables"], variable_format_map, data_formats)
|
187 |
if not is_valid:
|
188 |
session["awaiting_variable"] = list(validation_errors.keys())[0]
|
@@ -190,7 +172,6 @@ async def chat(msg: llm_model.Message, request: Request):
|
|
190 |
app.state.session_store = session_store
|
191 |
return {"response": list(validation_errors.values())[0]}
|
192 |
|
193 |
-
# ❓ Eksik parametre kontrolü
|
194 |
expected_vars = list(variable_format_map.keys())
|
195 |
missing_vars = [v for v in expected_vars if v not in session["variables"]]
|
196 |
if missing_vars:
|
@@ -199,7 +180,6 @@ async def chat(msg: llm_model.Message, request: Request):
|
|
199 |
app.state.session_store = session_store
|
200 |
return {"response": f"Lütfen {missing_vars[0]} bilgisini belirtir misiniz?"}
|
201 |
|
202 |
-
# 🚀 Intent çalıştır
|
203 |
result = intent.execute_intent(
|
204 |
detected_intent,
|
205 |
user_input,
|
@@ -218,7 +198,6 @@ async def chat(msg: llm_model.Message, request: Request):
|
|
218 |
else:
|
219 |
return {"response": random.choice(s_config.FALLBACK_ANSWERS)}
|
220 |
|
221 |
-
# 🤖 Intent algılanamadıysa veya threshold altındaysa LLM’e sor
|
222 |
session["awaiting_variable"] = None
|
223 |
session["variables"] = {}
|
224 |
response, response_conf = await llm_model.generate_response(user_input, s_config)
|
@@ -230,7 +209,11 @@ async def chat(msg: llm_model.Message, request: Request):
|
|
230 |
traceback.print_exc()
|
231 |
return JSONResponse(content={"error": str(e)}, status_code=500)
|
232 |
|
|
|
233 |
threading.Thread(target=llm_model.setup_model, kwargs={"s_config": s_config}, daemon=True).start()
|
234 |
threading.Thread(target=lambda: uvicorn.run(app, host="0.0.0.0", port=7860), daemon=True).start()
|
|
|
|
|
|
|
235 |
while True:
|
236 |
-
time.sleep(60)
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
import intent_test_runner
|
6 |
from service_config import ServiceConfig
|
7 |
+
import intent, llm_model
|
8 |
from log import log
|
9 |
|
10 |
s_config = ServiceConfig()
|
|
|
12 |
|
13 |
# === FastAPI
|
14 |
app = FastAPI()
|
|
|
15 |
|
16 |
@app.get("/")
|
17 |
def health():
|
18 |
return {"status": "ok"}
|
19 |
|
|
|
|
|
20 |
@app.post("/run_tests", status_code=202)
|
21 |
def run_tests():
|
22 |
log("🚦 /run_tests çağrıldı. Testler başlatılıyor...")
|
|
|
25 |
|
26 |
@app.get("/start", response_class=HTMLResponse)
|
27 |
def root():
|
|
|
28 |
session_id = str(uuid.uuid4())
|
29 |
session_info = {
|
30 |
"session_id": session_id,
|
|
|
33 |
"last_intent": None,
|
34 |
"awaiting_variable": None
|
35 |
}
|
|
|
|
|
36 |
if not hasattr(app.state, "session_store"):
|
37 |
app.state.session_store = {}
|
38 |
app.state.session_store[session_id] = session_info
|
|
|
39 |
log(f"🌐 /start ile yeni session başlatıldı: {session_id}")
|
|
|
|
|
40 |
return f"""
|
41 |
<html><body>
|
42 |
<h2>Turkcell LLM Chat</h2>
|
|
|
47 |
<script>
|
48 |
const sessionId = "{session_id}";
|
49 |
localStorage.setItem("session_id", sessionId);
|
|
|
50 |
async function send() {{
|
51 |
const input = document.getElementById("input").value;
|
52 |
const res = await fetch('/chat', {{
|
|
|
68 |
def start_chat():
|
69 |
if llm_model.model is None or llm_model.tokenizer is None:
|
70 |
return {"error": "Model yüklenmedi."}
|
|
|
71 |
if not hasattr(app.state, "session_store"):
|
72 |
app.state.session_store = {}
|
|
|
73 |
session_id = str(uuid.uuid4())
|
74 |
session_info = {
|
75 |
"session_id": session_id,
|
|
|
122 |
if llm_model.model is None or llm_model.tokenizer is None:
|
123 |
return {"error": "Model yüklenmedi."}
|
124 |
|
|
|
125 |
detected_intent, intent_conf = None, 0.0
|
126 |
if s_config.INTENT_MODEL:
|
127 |
detected_intent, intent_conf = await intent.detect_intent(user_input)
|
|
|
130 |
current_intent = session.get("last_intent")
|
131 |
awaiting_variable = session.get("awaiting_variable")
|
132 |
|
|
|
133 |
if (
|
134 |
awaiting_variable and
|
135 |
detected_intent and
|
|
|
142 |
session["last_intent"] = detected_intent
|
143 |
current_intent = detected_intent
|
144 |
|
|
|
145 |
if (
|
146 |
detected_intent and
|
147 |
intent_conf > s_config.INTENT_CONFIDENCE_THRESHOLD and
|
|
|
152 |
data_formats = s_config.DATA_FORMATS
|
153 |
variable_format_map = definition.get("variable_formats", {})
|
154 |
|
|
|
155 |
if awaiting_variable:
|
156 |
extracted = intent.extract_parameters(pattern_list, user_input)
|
157 |
for p in extracted:
|
|
|
161 |
log(f"✅ Awaiting parametre tamamlandı: {awaiting_variable} = {p['value']}")
|
162 |
break
|
163 |
|
|
|
164 |
extracted = intent.extract_parameters(pattern_list, user_input)
|
165 |
variables = {p["key"]: p["value"] for p in extracted}
|
166 |
session.setdefault("variables", {}).update(variables)
|
167 |
|
|
|
168 |
is_valid, validation_errors = intent.validate_variable_formats(session["variables"], variable_format_map, data_formats)
|
169 |
if not is_valid:
|
170 |
session["awaiting_variable"] = list(validation_errors.keys())[0]
|
|
|
172 |
app.state.session_store = session_store
|
173 |
return {"response": list(validation_errors.values())[0]}
|
174 |
|
|
|
175 |
expected_vars = list(variable_format_map.keys())
|
176 |
missing_vars = [v for v in expected_vars if v not in session["variables"]]
|
177 |
if missing_vars:
|
|
|
180 |
app.state.session_store = session_store
|
181 |
return {"response": f"Lütfen {missing_vars[0]} bilgisini belirtir misiniz?"}
|
182 |
|
|
|
183 |
result = intent.execute_intent(
|
184 |
detected_intent,
|
185 |
user_input,
|
|
|
198 |
else:
|
199 |
return {"response": random.choice(s_config.FALLBACK_ANSWERS)}
|
200 |
|
|
|
201 |
session["awaiting_variable"] = None
|
202 |
session["variables"] = {}
|
203 |
response, response_conf = await llm_model.generate_response(user_input, s_config)
|
|
|
209 |
traceback.print_exc()
|
210 |
return JSONResponse(content={"error": str(e)}, status_code=500)
|
211 |
|
212 |
+
# 🧠 Model setup ve sunucu
|
213 |
threading.Thread(target=llm_model.setup_model, kwargs={"s_config": s_config}, daemon=True).start()
|
214 |
threading.Thread(target=lambda: uvicorn.run(app, host="0.0.0.0", port=7860), daemon=True).start()
|
215 |
+
|
216 |
+
# 🧘 Eğitim sonrası uygulama restart olmasın diye bekleme
|
217 |
+
log("⏸️ Eğitim tamamlandı. Servis bekleme modunda...")
|
218 |
while True:
|
219 |
+
time.sleep(60)
|