Spaces:
Paused
Paused
Update llm_model.py
Browse files- llm_model.py +9 -9
llm_model.py
CHANGED
|
@@ -12,30 +12,30 @@ eos_token_id = None
|
|
| 12 |
class Message(BaseModel):
|
| 13 |
user_input: str
|
| 14 |
|
| 15 |
-
def setup_model(
|
| 16 |
try:
|
| 17 |
log("🧠 setup_model() başladı")
|
| 18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
log(f"📡 Kullanılan cihaz: {device}")
|
| 20 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 21 |
log("📦 Tokenizer yüklendi. Ana model indiriliyor...")
|
| 22 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
log("📦 Ana model indirildi ve yüklendi. eval() çağırılıyor...")
|
| 24 |
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
|
| 25 |
model.config.pad_token_id = tokenizer.pad_token_id
|
| 26 |
eos_token_id = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
| 27 |
model.eval()
|
| 28 |
log("✅ Ana model eval() çağrıldı")
|
| 29 |
-
log(f"📦 Intent modeli indiriliyor: {
|
| 30 |
-
_ = AutoTokenizer.from_pretrained(
|
| 31 |
-
_ = AutoModelForSequenceClassification.from_pretrained(
|
| 32 |
log("✅ Intent modeli önbelleğe alındı.")
|
| 33 |
log("✔️ Model başarıyla yüklendi ve sohbet için hazır.")
|
| 34 |
except Exception as e:
|
| 35 |
log(f"❌ setup_model() hatası: {e}")
|
| 36 |
traceback.print_exc()
|
| 37 |
|
| 38 |
-
async def generate_response(text,
|
| 39 |
messages = [{"role": "user", "content": text}]
|
| 40 |
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
|
| 41 |
eos_token = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
|
@@ -47,14 +47,14 @@ async def generate_response(text, app_config):
|
|
| 47 |
input_ids=input_ids,
|
| 48 |
attention_mask=attention_mask,
|
| 49 |
max_new_tokens=128,
|
| 50 |
-
do_sample=
|
| 51 |
eos_token_id=eos_token,
|
| 52 |
pad_token_id=tokenizer.pad_token_id,
|
| 53 |
return_dict_in_generate=True,
|
| 54 |
output_scores=True
|
| 55 |
)
|
| 56 |
|
| 57 |
-
if not
|
| 58 |
scores = torch.stack(output.scores, dim=1)
|
| 59 |
probs = torch.nn.functional.softmax(scores[0], dim=-1)
|
| 60 |
top_conf = probs.max().item()
|
|
|
|
| 12 |
class Message(BaseModel):
|
| 13 |
user_input: str
|
| 14 |
|
| 15 |
+
def setup_model(service_config):
|
| 16 |
try:
|
| 17 |
log("🧠 setup_model() başladı")
|
| 18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
log(f"📡 Kullanılan cihaz: {device}")
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained(service_config.MODEL_BASE, use_fast=False)
|
| 21 |
log("📦 Tokenizer yüklendi. Ana model indiriliyor...")
|
| 22 |
+
model = AutoModelForCausalLM.from_pretrained(service_config.MODEL_BASE, torch_dtype=torch.float32).to(device)
|
| 23 |
log("📦 Ana model indirildi ve yüklendi. eval() çağırılıyor...")
|
| 24 |
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
|
| 25 |
model.config.pad_token_id = tokenizer.pad_token_id
|
| 26 |
eos_token_id = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
| 27 |
model.eval()
|
| 28 |
log("✅ Ana model eval() çağrıldı")
|
| 29 |
+
log(f"📦 Intent modeli indiriliyor: {service_config.INTENT_MODEL_ID}")
|
| 30 |
+
_ = AutoTokenizer.from_pretrained(service_config.INTENT_MODEL_ID)
|
| 31 |
+
_ = AutoModelForSequenceClassification.from_pretrained(service_config.INTENT_MODEL_ID)
|
| 32 |
log("✅ Intent modeli önbelleğe alındı.")
|
| 33 |
log("✔️ Model başarıyla yüklendi ve sohbet için hazır.")
|
| 34 |
except Exception as e:
|
| 35 |
log(f"❌ setup_model() hatası: {e}")
|
| 36 |
traceback.print_exc()
|
| 37 |
|
| 38 |
+
async def generate_response(text, service_config):
|
| 39 |
messages = [{"role": "user", "content": text}]
|
| 40 |
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
|
| 41 |
eos_token = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
|
|
|
| 47 |
input_ids=input_ids,
|
| 48 |
attention_mask=attention_mask,
|
| 49 |
max_new_tokens=128,
|
| 50 |
+
do_sample=service_config.USE_SAMPLING,
|
| 51 |
eos_token_id=eos_token,
|
| 52 |
pad_token_id=tokenizer.pad_token_id,
|
| 53 |
return_dict_in_generate=True,
|
| 54 |
output_scores=True
|
| 55 |
)
|
| 56 |
|
| 57 |
+
if not service_config.USE_SAMPLING:
|
| 58 |
scores = torch.stack(output.scores, dim=1)
|
| 59 |
probs = torch.nn.functional.softmax(scores[0], dim=-1)
|
| 60 |
top_conf = probs.max().item()
|