Spaces:
Running
Running
Update llm_model.py
Browse files- llm_model.py +83 -84
llm_model.py
CHANGED
@@ -1,84 +1,83 @@
|
|
1 |
-
import torch
|
2 |
-
import traceback
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
-
from log import log
|
5 |
-
from pydantic import BaseModel
|
6 |
-
|
7 |
-
class Message(BaseModel):
|
8 |
-
user_input: str
|
9 |
-
|
10 |
-
class LLMModel:
|
11 |
-
def __init__(self):
|
12 |
-
self.model = None
|
13 |
-
self.tokenizer = None
|
14 |
-
self.eos_token_id = None
|
15 |
-
|
16 |
-
def setup(self, s_config, project_config):
|
17 |
-
try:
|
18 |
-
log("🧠 LLMModel setup() başladı")
|
19 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
-
log(f"📡 Kullanılan cihaz: {device}")
|
21 |
-
|
22 |
-
model_base = project_config["model_base"]
|
23 |
-
|
24 |
-
if s_config.work_mode == "hfcloud":
|
25 |
-
token = s_config.get_auth_token()
|
26 |
-
log(f"📦 Hugging Face cloud modeli yükleniyor: {model_base}")
|
27 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_base,
|
28 |
-
self.model = AutoModelForCausalLM.from_pretrained(model_base,
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
self.
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
self.
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
self.
|
44 |
-
self.
|
45 |
-
self.
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
start
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
return decoded, top_conf
|
|
|
1 |
+
import torch
|
2 |
+
import traceback
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
from log import log
|
5 |
+
from pydantic import BaseModel
|
6 |
+
|
7 |
+
class Message(BaseModel):
|
8 |
+
user_input: str
|
9 |
+
|
10 |
+
class LLMModel:
|
11 |
+
def __init__(self):
|
12 |
+
self.model = None
|
13 |
+
self.tokenizer = None
|
14 |
+
self.eos_token_id = None
|
15 |
+
|
16 |
+
def setup(self, s_config, project_config):
|
17 |
+
try:
|
18 |
+
log("🧠 LLMModel setup() başladı")
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
log(f"📡 Kullanılan cihaz: {device}")
|
21 |
+
|
22 |
+
model_base = project_config["model_base"]
|
23 |
+
|
24 |
+
if s_config.work_mode == "hfcloud":
|
25 |
+
token = s_config.get_auth_token()
|
26 |
+
log(f"📦 Hugging Face cloud modeli yükleniyor: {model_base}")
|
27 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_base, token=token, use_fast=False)
|
28 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_base, token=token, torch_dtype=torch.float32).to(device)
|
29 |
+
elif s_config.work_mode == "cloud":
|
30 |
+
log(f"📦 Diğer cloud ortamından model indiriliyor: {model_base}")
|
31 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
32 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float32).to(device)
|
33 |
+
|
34 |
+
elif s_config.work_mode == "on-prem":
|
35 |
+
log(f"📦 On-prem model path: {model_base}")
|
36 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
37 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float32).to(device)
|
38 |
+
|
39 |
+
else:
|
40 |
+
raise Exception(f"Bilinmeyen work_mode: {s_config.work_mode}")
|
41 |
+
|
42 |
+
self.tokenizer.pad_token = self.tokenizer.pad_token or self.tokenizer.eos_token
|
43 |
+
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
44 |
+
self.eos_token_id = self.tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
45 |
+
self.model.eval()
|
46 |
+
|
47 |
+
log("✅ LLMModel setup() başarıyla tamamlandı.")
|
48 |
+
except Exception as e:
|
49 |
+
log(f"❌ LLMModel setup() hatası: {e}")
|
50 |
+
traceback.print_exc()
|
51 |
+
|
52 |
+
async def generate_response(self, text, project_config):
|
53 |
+
messages = [{"role": "user", "content": text}]
|
54 |
+
encodeds = self.tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
|
55 |
+
input_ids = encodeds.to(self.model.device)
|
56 |
+
attention_mask = (input_ids != self.tokenizer.pad_token_id).long()
|
57 |
+
|
58 |
+
with torch.no_grad():
|
59 |
+
output = self.model.generate(
|
60 |
+
input_ids=input_ids,
|
61 |
+
attention_mask=attention_mask,
|
62 |
+
max_new_tokens=128,
|
63 |
+
do_sample=project_config["use_sampling"],
|
64 |
+
eos_token_id=self.eos_token_id,
|
65 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
66 |
+
return_dict_in_generate=True,
|
67 |
+
output_scores=True
|
68 |
+
)
|
69 |
+
|
70 |
+
if not project_config["use_sampling"]:
|
71 |
+
scores = torch.stack(output.scores, dim=1)
|
72 |
+
probs = torch.nn.functional.softmax(scores[0], dim=-1)
|
73 |
+
top_conf = probs.max().item()
|
74 |
+
else:
|
75 |
+
top_conf = None
|
76 |
+
|
77 |
+
decoded = self.tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip()
|
78 |
+
for tag in ["assistant", "<|im_start|>assistant"]:
|
79 |
+
start = decoded.find(tag)
|
80 |
+
if start != -1:
|
81 |
+
decoded = decoded[start + len(tag):].strip()
|
82 |
+
break
|
83 |
+
return decoded, top_conf
|
|