import os, threading, uvicorn, time, traceback, random, json, asyncio, uuid from fastapi import FastAPI, Request from fastapi.responses import HTMLResponse, JSONResponse from transformers import AutoTokenizer, AutoModelForSequenceClassification import intent_test_runner from service_config import ServiceConfig import intent, log, intent, llm_model s_config = ServiceConfig() s_config.setup_environment() # === FastAPI app = FastAPI() chat_history = [] @app.get("/") def health(): return {"status": "ok"} import uuid # yukarıda zaten eklendiğini varsayıyoruz @app.post("/run_tests", status_code=202) def run_tests(): log("🚦 /run_tests çağrıldı. Testler başlatılıyor...") threading.Thread(target=intent_test_runner.run_all_tests, daemon=True).start() return {"status": "running", "message": "Test süreci başlatıldı."} @app.get("/start", response_class=HTMLResponse) def root(): # Yeni session ID üret session_id = str(uuid.uuid4()) session_info = { "session_id": session_id, "variables": {}, "auth_tokens": {}, "last_intent": None, "awaiting_variable": None } # Session store başlatıldıysa ekle if not hasattr(app.state, "session_store"): app.state.session_store = {} app.state.session_store[session_id] = session_info log(f"🌐 /start ile yeni session başlatıldı: {session_id}") # HTML + session_id gömülü return f"""

Turkcell LLM Chat





""" @app.post("/start_chat") def start_chat(): if not hasattr(app.state, "session_store"): app.state.session_store = {} session_id = str(uuid.uuid4()) session_info = { "session_id": session_id, "variables": {}, "auth_tokens": {}, "last_intent": None, "awaiting_variable": None } app.state.session_store[session_id] = session_info log(f"🆕 Yeni session başlatıldı: {session_id}") return {"session_id": session_id} @app.post("/train_intents", status_code=202) def train_intents(train_input: intent.TrainInput): log("📥 POST /train_intents çağrıldı.") intents = train_input.intents intent.INTENT_DEFINITIONS = {intent["name"]: intent for intent in intents} threading.Thread(target=lambda: intent.background_training(intents, s_config), daemon=True).start() return {"status": "accepted", "message": "Intent eğitimi arka planda başlatıldı."} @app.post("/load_intent_model") def load_intent_model(): try: intent.INTENT_TOKENIZER = AutoTokenizer.from_pretrained(s_config.INTENT_MODEL_PATH) intent.INTENT_MODEL = AutoModelForSequenceClassification.from_pretrained(s_config.INTENT_MODEL_PATH) with open(os.path.join(s_config.INTENT_MODEL_PATH, "label2id.json")) as f: intent.LABEL2ID = json.load(f) return {"status": "ok", "message": "Intent modeli yüklendi."} except Exception as e: return JSONResponse(content={"error": str(e)}, status_code=500) @app.post("/chat") async def chat(msg: llm_model.Message, request: Request): user_input = msg.user_input.strip() session_id = request.headers.get("X-Session-ID", "demo-session") if not hasattr(app.state, "session_store"): app.state.session_store = {} session_store = getattr(app.state, "session_store", {}) session_info = { "session_id": session_id, "variables": {}, "auth_tokens": {}, "last_intent": None } session = session_store.get(session_id, session_info) try: if llm_model.model is None or llm_model.tokenizer is None: return {"error": "Model yüklenmedi."} if s_config.INTENT_MODEL: intent_task = asyncio.create_task(intent.detect_intent(user_input)) response_task = asyncio.create_task(llm_model.generate_response(user_input, s_config)) intent, intent_conf = await intent_task log(f"🎯 Intent: {intent} (conf={intent_conf:.2f})") if intent_conf > s_config.INTENT_CONFIDENCE_THRESHOLD and intent in s_config.INTENT_DEFINITIONS: result = intent.execute_intent(intent, user_input, session) if "reply" in result: session_store[session_id] = result["session"] app.state.session_store = session_store return {"reply": result["reply"]} elif "errors" in result: session_store[session_id] = result["session"] app.state.session_store = session_store return {"response": list(result["errors"].values())[0]} else: return {"response": random.choice(s_config.FALLBACK_ANSWERS)} else: response, response_conf = await response_task if response_conf is not None and response_conf < s_config.LLM_CONFIDENCE_THRESHOLD: return {"response": random.choice(s_config.FALLBACK_ANSWERS)} return {"response": response} else: response, response_conf = await llm_model.generate_response(user_input, s_config) if response_conf is not None and response_conf < s_config.LLM_CONFIDENCE_THRESHOLD: return {"response": random.choice(s_config.FALLBACK_ANSWERS)} return {"response": response} except Exception as e: traceback.print_exc() return JSONResponse(content={"error": str(e)}, status_code=500) threading.Thread(target=llm_model.setup_model, kwargs={"service_config": s_config}, daemon=True).start() threading.Thread(target=lambda: uvicorn.run(app, host="0.0.0.0", port=7860), daemon=True).start() while True: time.sleep(60)