import torch, traceback from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification from log import log from pydantic import BaseModel model = None tokenizer = None eos_token_id = None class Message(BaseModel): user_input: str def setup_model(s_config): global model, tokenizer, eos_token_id try: log("🧠 setup_model() başladı") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") log(f"📡 Kullanılan cihaz: {device}") tokenizer = AutoTokenizer.from_pretrained(s_config.MODEL_BASE, use_fast=False) log("📦 Tokenizer yüklendi. Ana model indiriliyor...") model = AutoModelForCausalLM.from_pretrained(s_config.MODEL_BASE, torch_dtype=torch.float32).to(device) log("📦 Ana model indirildi ve yüklendi. eval() çağırılıyor...") tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token model.config.pad_token_id = tokenizer.pad_token_id eos_token_id = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0] model.eval() log("✅ Ana model eval() çağrıldı") log(f"📦 Intent modeli indiriliyor: {s_config.INTENT_MODEL_ID}") _ = AutoTokenizer.from_pretrained(s_config.INTENT_MODEL_ID) _ = AutoModelForSequenceClassification.from_pretrained(s_config.INTENT_MODEL_ID) log("✅ Intent modeli önbelleğe alındı.") log("✔️ Model başarıyla yüklendi ve sohbet için hazır.") except Exception as e: log(f"❌ setup_model() hatası: {e}") traceback.print_exc() async def generate_response(text, app_config): messages = [{"role": "user", "content": text}] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True) eos_token = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0] input_ids = encodeds.to(model.device) attention_mask = (input_ids != tokenizer.pad_token_id).long() with torch.no_grad(): output = model.generate( input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=128, do_sample=app_config.USE_SAMPLING, eos_token_id=eos_token, pad_token_id=tokenizer.pad_token_id, return_dict_in_generate=True, output_scores=True ) if not app_config.USE_SAMPLING: scores = torch.stack(output.scores, dim=1) probs = torch.nn.functional.softmax(scores[0], dim=-1) top_conf = probs.max().item() else: top_conf = None decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip() for tag in ["assistant", "<|im_start|>assistant"]: start = decoded.find(tag) if start != -1: decoded = decoded[start + len(tag):].strip() break return decoded, top_conf