from fastapi import Request from fastapi.responses import JSONResponse import traceback import random from intent import extract_parameters, validate_variable_formats, detect_intent from intent_api import execute_intent from log import log from llm_model import Message, LLMModel async def handle_chat(msg: Message, request: Request, app, service_config, session, llm_model: LLMModel): try: user_input = msg.user_input.strip() project_name = session.project_name project_config = service_config.get_project_llm_config(project_name) project_intents = service_config.get_project_intents(project_name) if llm_model.model is None or llm_model.tokenizer is None: return {"error": f"{project_name} için model yüklenmedi."} detected_intent, intent_conf = await detect_intent(user_input) log(f"🎯 Intent tespit edildi: {detected_intent}, Confidence: {intent_conf:.2f}") current_intent = session.last_intent awaiting_variable = session.awaiting_variable if ( awaiting_variable and detected_intent and detected_intent != current_intent and intent_conf > project_config["intent_confidence_treshold"] ): log("🧹 Konu değişikliği algılandı → context sıfırlanıyor") session.awaiting_variable = None session.variables = {} session.last_intent = detected_intent current_intent = detected_intent intent_is_valid = ( detected_intent and intent_conf > project_config["intent_confidence_treshold"] and any(i["name"] == detected_intent for i in project_intents) ) log(f"✅ Intent geçerli mi?: {intent_is_valid}") if intent_is_valid: session.last_intent = detected_intent intent_def = next(i for i in project_intents if i["name"] == detected_intent) pattern_list = intent_def.get("variables", []) variable_format_map = intent_def.get("variable_formats", {}) data_formats = service_config.data_formats if awaiting_variable: extracted = extract_parameters(pattern_list, user_input) for p in extracted: if p["key"] == awaiting_variable: session.variables[awaiting_variable] = p["value"] session.awaiting_variable = None log(f"✅ Awaiting parametre tamamlandı: {awaiting_variable} = {p['value']}") break extracted = extract_parameters(pattern_list, user_input) variables = {p["key"]: p["value"] for p in extracted} session.variables.update(variables) is_valid, validation_errors = validate_variable_formats(session.variables, variable_format_map, data_formats) log(f"📛 Validasyon hataları: {validation_errors}") if not is_valid: session.awaiting_variable = list(validation_errors.keys())[0] return {"response": list(validation_errors.values())[0]} expected_vars = list(variable_format_map.keys()) missing_vars = [v for v in expected_vars if v not in session.variables] log(f"📌 Beklenen parametreler: {expected_vars}, Eksik: {missing_vars}") if missing_vars: session.awaiting_variable = missing_vars[0] return {"response": f"Lütfen {missing_vars[0]} bilgisini belirtir misiniz?"} log("🚀 execute_intent() çağrılıyor...") result = execute_intent( detected_intent, user_input, session.__dict__, {i["name"]: i for i in project_intents}, data_formats ) if "reply" in result: return {"reply": result["reply"]} elif "errors" in result: return {"response": list(result["errors"].values())[0]} else: return {"response": random.choice(project_config["fallback_answers"])} log("🤖 execute_intent çağrılmadı → LLM fallback devrede") session.awaiting_variable = None session.variables = {} response, response_conf = await llm_model.generate_response(user_input, project_config) if response_conf is not None and response_conf < project_config["llm_confidence_treshold"]: return {"response": random.choice(project_config["fallback_answers"])} return {"response": response} except Exception as e: traceback.print_exc() return JSONResponse(content={"error": str(e)}, status_code=500)