import torch import traceback from transformers import AutoTokenizer, AutoModelForCausalLM from log import log from pydantic import BaseModel class Message(BaseModel): user_input: str class LLMModel: def __init__(self): self.model = None self.tokenizer = None self.eos_token_id = None def setup(self, s_config, project_config): try: log("🧠 LLMModel setup() başladı") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") log(f"📡 Kullanılan cihaz: {device}") model_base = project_config["model_base"] if s_config.work_mode == "hfcloud": token = s_config.get_auth_token() log(f"📦 Hugging Face cloud modeli yükleniyor: {model_base}") self.tokenizer = AutoTokenizer.from_pretrained(model_base, token=token, use_fast=False) self.model = AutoModelForCausalLM.from_pretrained(model_base, token=token, torch_dtype=torch.float32).to(device) elif s_config.work_mode == "cloud": log(f"📦 Diğer cloud ortamından model indiriliyor: {model_base}") self.tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) self.model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float32).to(device) elif s_config.work_mode == "on-prem": log(f"📦 On-prem model path: {model_base}") self.tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) self.model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float32).to(device) else: raise Exception(f"Bilinmeyen work_mode: {s_config.work_mode}") self.tokenizer.pad_token = self.tokenizer.pad_token or self.tokenizer.eos_token self.model.config.pad_token_id = self.tokenizer.pad_token_id self.eos_token_id = self.tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0] self.model.eval() log("✅ LLMModel setup() başarıyla tamamlandı.") except Exception as e: log(f"❌ LLMModel setup() hatası: {e}") traceback.print_exc() async def generate_response(self, text, project_config): messages = [{"role": "user", "content": text}] encodeds = self.tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True) input_ids = encodeds.to(self.model.device) attention_mask = (input_ids != self.tokenizer.pad_token_id).long() with torch.no_grad(): output = self.model.generate( input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=128, do_sample=project_config["use_sampling"], eos_token_id=self.eos_token_id, pad_token_id=self.tokenizer.pad_token_id, return_dict_in_generate=True, output_scores=True ) if not project_config["use_sampling"]: scores = torch.stack(output.scores, dim=1) probs = torch.nn.functional.softmax(scores[0], dim=-1) top_conf = probs.max().item() else: top_conf = None decoded = self.tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip() for tag in ["assistant", "<|im_start|>assistant"]: start = decoded.find(tag) if start != -1: decoded = decoded[start + len(tag):].strip() break return decoded, top_conf