from fastapi import FastAPI from controllers import chat_controller, test_controller, admin_controller, health_controller from core import service_config, session_store, llm_models from llm_model import LLMModel from intent_utils import background_training from log import log import os import warnings # FutureWarning'leri sustur warnings.simplefilter(action='ignore', category=FutureWarning) app = FastAPI() app.include_router(health_controller.router) app.include_router(chat_controller.router) app.include_router(test_controller.router) app.include_router(admin_controller.router) BASE_PROJECTS_DIR = "/data/projects" def load_project(project_name, config, project_path): llm_config = config.get_project_llm_config(project_name) model_instance = LLMModel() model_instance.setup(config, llm_config, project_path) # Intent modeli path intent_model_path = os.path.join(project_path, "intent", "trained_model") # Eğer intent modeli klasörü yoksa → eğitim başlat if not os.path.exists(intent_model_path) or not os.path.isfile(os.path.join(intent_model_path, "config.json")): log(f"🛠 Intent modeli bulunamadı, eğitim başlatılıyor: {intent_model_path}") intents = config.get_project_intents(project_name) os.makedirs(intent_model_path, exist_ok=True) background_training( project_name, intents, llm_config["intent_model_id"], intent_model_path, llm_config["train_confidence_treshold"] ) # Eğitim sonrası intent modelini yükle if os.path.exists(intent_model_path) and os.path.isfile(os.path.join(intent_model_path, "config.json")): model_instance.load_intent_model(intent_model_path) else: log(f"⚠️ Intent modeli yüklenemedi: {intent_model_path}, yükleme atlandı.") return model_instance log("🌐 Servis başlatılıyor...") service_config.load(is_reload=False) for project_name in service_config.projects: project_path = os.path.join(BASE_PROJECTS_DIR, project_name) os.makedirs(project_path, exist_ok=True) os.makedirs(os.path.join(project_path, "llm", "base_model"), exist_ok=True) os.makedirs(os.path.join(project_path, "llm", "fine_tune"), exist_ok=True) os.makedirs(os.path.join(project_path, "intent", "trained_model"), exist_ok=True) model_instance = load_project(project_name, service_config, project_path) llm_models[project_name] = model_instance log(f"✅ '{project_name}' için tüm modeller yüklenip belleğe alındı.") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)