File size: 4,375 Bytes
126bdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import sys, os, zipfile, shutil, time, traceback, threading, uvicorn
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from datetime import datetime
from datasets import load_dataset
from huggingface_hub import HfApi
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
from peft import get_peft_model, LoraConfig, TaskType
import torch

# === Sabitler ===
START_NUMBER = 0
END_NUMBER = 9
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
TOKENIZED_DATASET_ID = "UcsTurkey/turkish-general-culture-tokenized"
ZIP_UPLOAD_REPO = "UcsTurkey/trained-zips"
HF_TOKEN = os.environ.get("HF_TOKEN")
BATCH_SIZE = 1
EPOCHS = 2
MAX_LENGTH = 2048
OUTPUT_DIR = "/data/output"
ZIP_FOLDER = "/data/zip_temp"
zip_name = f"trained_model_{START_NUMBER:03d}_{END_NUMBER:03d}.zip"
ZIP_PATH = os.path.join(ZIP_FOLDER, zip_name)

# === Health check
app = FastAPI()

@app.get("/")
def health():
    return JSONResponse(content={"status": "ok"})

def run_health_server():
    uvicorn.run(app, host="0.0.0.0", port=7860)

threading.Thread(target=run_health_server, daemon=True).start()

# === Log
def log(message):
    timestamp = datetime.now().strftime("%H:%M:%S")
    print(f"[{timestamp}] {message}")
    sys.stdout.flush()

# === Eğitim Başlıyor
log("🛠️ Ortam hazırlanıyor...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

log("🧠 Model indiriliyor...")
base_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16)
base_model.config.pad_token_id = tokenizer.pad_token_id

log("🎯 LoRA adapter uygulanıyor...")
peft_config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    r=64, lora_alpha=16, lora_dropout=0.1,
    bias="none", fan_in_fan_out=False
)
model = get_peft_model(base_model, peft_config)
model.print_trainable_parameters()

log("📦 Parquet dosyaları listeleniyor...")
api = HfApi()
files = api.list_repo_files(repo_id=TOKENIZED_DATASET_ID, repo_type="dataset", token=HF_TOKEN)
selected_files = sorted([f for f in files if f.startswith("chunk_") and f.endswith(".parquet")])[START_NUMBER:END_NUMBER+1]
if not selected_files:
    log("⚠️ Parquet bulunamadı. Eğitim iptal.")
    exit(0)

training_args = TrainingArguments(
    output_dir=OUTPUT_DIR,
    per_device_train_batch_size=BATCH_SIZE,
    num_train_epochs=EPOCHS,
    save_strategy="epoch",
    save_total_limit=2,
    learning_rate=2e-4,
    disable_tqdm=True,
    logging_strategy="steps",
    logging_steps=10,
    report_to=[],
    bf16=True,
    fp16=False
)

for file in selected_files:
    try:
        log(f"\n📄 Yükleniyor: {file}")
        dataset = load_dataset(
            path=TOKENIZED_DATASET_ID,
            data_files={"train": file},
            split="train",
            token=HF_TOKEN
        )
        log(f"🔍 {len(dataset)} örnek")
        if len(dataset) == 0:
            continue
        trainer = Trainer(model=model, args=training_args, train_dataset=dataset)
        log("🚀 Eğitim başlıyor...")
        trainer.train()
        log("✅ Eğitim tamam.")
    except Exception as e:
        log(f"❌ Hata: {file}{e}")
        traceback.print_exc()

# === Zip
log("📦 Model zipleniyor...")
try:
    tmp_dir = os.path.join(ZIP_FOLDER, "temp_save")
    os.makedirs(tmp_dir, exist_ok=True)
    model.save_pretrained(tmp_dir)
    tokenizer.save_pretrained(tmp_dir)

    with zipfile.ZipFile(ZIP_PATH, "w", zipfile.ZIP_DEFLATED) as zipf:
        for root, _, files in os.walk(tmp_dir):
            for file in files:
                filepath = os.path.join(root, file)
                arcname = os.path.relpath(filepath, tmp_dir)
                zipf.write(filepath, arcname=os.path.join("output", arcname))
    log(f"✅ Zip oluşturuldu: {ZIP_PATH}")
except Exception as e:
    log(f"❌ Zipleme hatası: {e}")
    traceback.print_exc()

# === Upload
try:
    log("☁️ Hugging Face'e yükleniyor...")
    api.upload_file(
        path_or_fileobj=ZIP_PATH,
        path_in_repo=zip_name,
        repo_id=ZIP_UPLOAD_REPO,
        repo_type="model",
        token=HF_TOKEN
    )
    log("✅ Upload tamam.")
except Exception as e:
    log(f"❌ Upload hatası: {e}")
    traceback.print_exc()

log("⏸️ Eğitim tamamlandı. Servis bekleme modunda...")
while True:
    time.sleep(60)