File size: 9,567 Bytes
ea55d0f
3108e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea55d0f
3108e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea55d0f
 
 
 
3108e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea55d0f
3108e73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Fine-tune + Intent + LLM + System Prompt
import os
import json
import re
import torch
import asyncio
import shutil
import zipfile
import threading
import uvicorn
import time
import traceback
import random
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse, HTMLResponse
from pydantic import BaseModel
from datetime import datetime
from datasets import Dataset
from huggingface_hub import hf_hub_download
from transformers import (
    AutoTokenizer,
    AutoModelForSequenceClassification,
    AutoModelForCausalLM,
    Trainer,
    TrainingArguments,
    pipeline
)
from peft import PeftModel

HF_TOKEN = os.getenv("HF_TOKEN")
MODEL_BASE = "malhajar/Mistral-7B-Instruct-v0.2-turkish"
USE_FINE_TUNE = False
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
FINE_TUNE_ZIP = "trained_model_000_009.zip"
USE_SAMPLING = False
CONFIDENCE_THRESHOLD = -1.5
FALLBACK_ANSWERS = [
    "Bu konuda maalesef bilgim yok.",
    "Ne demek istediğinizi tam anlayamadım.",
    "Bu soruya şu an yanıt veremiyorum."
]

INTENT_MODEL_PATH = "intent_model"
INTENT_MODEL_ID = "dbmdz/bert-base-turkish-cased"
USE_CUDA = torch.cuda.is_available()
INTENT_MODEL = None
INTENT_TOKENIZER = None
LABEL2ID = {}
model = None
tokenizer = None
chat_history = []

app = FastAPI()

def log(msg):
    print(f"[{datetime.now().strftime('%H:%M:%S')}] {msg}", flush=True)

def pattern_to_regex(pattern):
    return re.sub(r"\{(\w+?)\}", r"(?P<\1>.+?)", pattern)

class ChatInput(BaseModel):
    user_input: str

class TrainInput(BaseModel):
    intents: list

@app.get("/")
def health():
    return {"status": "ok"}

@app.get("/start", response_class=HTMLResponse)
def root():
    return """
    <html>
    <body>
        <h2>Mistral 7B Instruct Chat</h2>
        <textarea id="input" rows="4" cols="60" placeholder="Write your instruction..."></textarea><br>
        <button onclick="send()">Gönder</button><br><br>
        <label>Model Cevabı:</label><br>
        <textarea id="output" rows="10" cols="80" readonly style="white-space: pre-wrap;"></textarea>
        <script>
        async function send() {
            const input = document.getElementById("input").value;
            const res = await fetch('/chat', {
                method: 'POST',
                headers: { 'Content-Type': 'application/json' },
                body: JSON.stringify({ user_input: input })
            });
            const data = await res.json();
            document.getElementById('output').value = data.answer || data.response || data.error || 'Hata oluştu.';
        }
        </script>
    </body>
    </html>
    """

@app.post("/train_intents")
def train_intents(train_input: TrainInput):
    try:
        intents = train_input.intents
        log(f"🎯 Intent eğitimi başlatıldı. Intent sayısı: {len(intents)}")

        texts, labels = [], []
        label2id = {}
        for idx, intent in enumerate(intents):
            label2id[intent["name"]] = idx
            for ex in intent["examples"]:
                if "{" not in ex:
                    texts.append(ex)
                    labels.append(idx)

        dataset = Dataset.from_dict({"text": texts, "label": labels})

        tokenizer = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_ID, num_labels=len(label2id))

        def tokenize(batch):
            return tokenizer(batch["text"], truncation=True, padding=True)

        tokenized = dataset.map(tokenize, batched=True)
        args = TrainingArguments("./intent_train_output", per_device_train_batch_size=4, num_train_epochs=3, logging_steps=10, save_strategy="no", report_to=[])
        trainer = Trainer(model=model, args=args, train_dataset=tokenized)
        trainer.train()

        if os.path.exists(INTENT_MODEL_PATH):
            shutil.rmtree(INTENT_MODEL_PATH)
        model.save_pretrained(INTENT_MODEL_PATH)
        tokenizer.save_pretrained(INTENT_MODEL_PATH)
        with open(os.path.join(INTENT_MODEL_PATH, "label2id.json"), "w") as f:
            json.dump(label2id, f)

        log("✅ Intent modeli kaydedildi.")
        return {"status": "ok", "message": "Intent modeli eğitildi ve kaydedildi."}

    except Exception as e:
        log(f"❌ Intent eğitimi hatası: {e}")
        return JSONResponse(content={"error": str(e)}, status_code=500)

@app.post("/load_intent_model")
def load_intent_model():
    global INTENT_MODEL, INTENT_TOKENIZER, LABEL2ID
    try:
        if not os.path.exists(INTENT_MODEL_PATH):
            return JSONResponse(content={"error": "intent_model klasörü bulunamadı."}, status_code=400)

        INTENT_TOKENIZER = AutoTokenizer.from_pretrained(INTENT_MODEL_PATH)
        INTENT_MODEL = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_PATH)
        with open(os.path.join(INTENT_MODEL_PATH, "label2id.json")) as f:
            LABEL2ID = json.load(f)
        log("✅ Intent modeli belleğe yüklendi.")
        return {"status": "ok", "message": "Intent modeli yüklendi."}

    except Exception as e:
        log(f"❌ Intent modeli yükleme hatası: {e}")
        return JSONResponse(content={"error": str(e)}, status_code=500)

async def detect_intent(text):
    inputs = INTENT_TOKENIZER(text, return_tensors="pt")
    outputs = INTENT_MODEL(**inputs)
    pred_id = outputs.logits.argmax().item()
    id2label = {v: k for k, v in LABEL2ID.items()}
    return id2label[pred_id]

async def generate_response(text):
    messages = [
        {"role": "system", "content": "Sen yardımcı bir Türkçe yapay zeka asistanısın. Soruları açık ve doğru şekilde yanıtla."},
        {"role": "user", "content": text}
    ]
    inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
    inputs = {k: v.to(model.device) for k, v in inputs.items()}
    generate_args = {
        "max_new_tokens": 512,
        "return_dict_in_generate": True,
        "output_scores": True,
        "do_sample": USE_SAMPLING
    }
    if USE_SAMPLING:
        generate_args.update({"temperature": 0.7, "top_p": 0.9, "top_k": 50})

    with torch.no_grad():
        output = model.generate(**inputs, **generate_args)

    prompt_text = tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
    decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True)
    answer = decoded.replace(prompt_text, "").strip()

    if output.scores and len(output.scores) > 0:
        first_token_score = output.scores[0][0]
        if torch.isnan(first_token_score).any() or torch.isinf(first_token_score).any():
            log("⚠️ Geçersiz logit (NaN/Inf) tespit edildi.")
            return random.choice(FALLBACK_ANSWERS)
        max_score = torch.max(first_token_score).item()
        log(f"🔍 İlk token skoru: {max_score:.4f}")
        if max_score < CONFIDENCE_THRESHOLD:
            return random.choice(FALLBACK_ANSWERS)

    return answer

@app.post("/chat")
async def chat(input: ChatInput):
    user_input = input.user_input.strip()
    try:
        if model is None or tokenizer is None:
            return {"error": "Model veya tokenizer henüz yüklenmedi."}

        if INTENT_MODEL:
            intent_task = asyncio.create_task(detect_intent(user_input))
            response_task = asyncio.create_task(generate_response(user_input))
            intent = await intent_task
            response = await response_task
            log(f"✅ Intent: {intent}")
            return {"intent": intent, "response": response}
        else:
            response = await generate_response(user_input)
            log("💬 Intent modeli yok, yalnızca LLM cevabı verildi.")
            return {"response": response}

    except Exception as e:
        log(f"❌ /chat hatası: {e}")
        traceback.print_exc()
        return JSONResponse(content={"error": str(e)}, status_code=500)

def setup_model():
    global model, tokenizer
    try:
        device = "cuda" if torch.cuda.is_available() else "cpu"
        dtype = torch.float32

        if USE_FINE_TUNE:
            log("📦 Fine-tune zip indiriliyor...")
            zip_path = hf_hub_download(repo_id=FINE_TUNE_REPO, filename=FINE_TUNE_ZIP, repo_type="model", token=HF_TOKEN)
            extract_dir = "/app/extracted"
            os.makedirs(extract_dir, exist_ok=True)
            with zipfile.ZipFile(zip_path, "r") as zip_ref:
                zip_ref.extractall(extract_dir)

            tokenizer = AutoTokenizer.from_pretrained(os.path.join(extract_dir, "output"), use_fast=False)
            base_model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=dtype).to(device)
            model = PeftModel.from_pretrained(base_model, os.path.join(extract_dir, "output")).to(device)
        else:
            log("🧠 Ana model indiriliyor...")
            tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE, use_fast=False)
            model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=dtype).to(device)

        tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
        model.eval()
        log("✅ LLM model başarıyla yüklendi.")
    except Exception as e:
        log(f"❌ LLM model yükleme hatası: {e}")
        traceback.print_exc()

def run():
    log("===== Application Startup =====")
    threading.Thread(target=setup_model, daemon=True).start()
    threading.Thread(target=lambda: uvicorn.run(app, host="0.0.0.0", port=7860), daemon=True).start()
    while True:
        time.sleep(60)

# Uygulamayı çalıştır
run()