File size: 4,895 Bytes
126bdfd
 
 
 
 
 
9aa5822
126bdfd
 
 
 
 
 
e93d840
 
126bdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17584c6
126bdfd
 
 
 
 
 
 
 
 
 
9aa5822
 
 
 
 
126bdfd
 
 
 
 
 
 
 
9aa5822
126bdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aa5822
 
126bdfd
 
 
 
 
 
 
 
 
 
 
 
17584c6
9aa5822
 
17584c6
740b53c
9aa5822
17584c6
9aa5822
 
 
 
 
 
126bdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import sys, os, zipfile, shutil, time, traceback, threading, uvicorn
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from datetime import datetime
from datasets import load_dataset
from huggingface_hub import HfApi
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
from peft import get_peft_model, LoraConfig, TaskType
import torch

# === Sabitler ===
START_NUMBER = 0
END_NUMBER = 9
MODEL_NAME = "TURKCELL/Turkcell-LLM-7b-v1"
TOKENIZED_DATASET_ID = "UcsTurkey/turkish-train-tokenized"
ZIP_UPLOAD_REPO = "UcsTurkey/trained-zips"
HF_TOKEN = os.environ.get("HF_TOKEN")
BATCH_SIZE = 1
EPOCHS = 2
MAX_LENGTH = 2048
OUTPUT_DIR = "/data/output"
ZIP_FOLDER = "/data/zip_temp"
zip_name = f"trained_model_{START_NUMBER:03d}_{END_NUMBER:03d}.zip"
ZIP_PATH = os.path.join(ZIP_FOLDER, zip_name)

# === Health check
app = FastAPI()

@app.get("/")
def health():
    return JSONResponse(content={"status": "ok"})

def run_health_server():
    uvicorn.run(app, host="0.0.0.0", port=7860)

threading.Thread(target=run_health_server, daemon=True).start()

# === Log
def log(message):
    timestamp = datetime.now().strftime("%H:%M:%S")
    print(f"[{timestamp}] {message}")
    sys.stdout.flush()

# === Eğitim Başlıyor
log("🛠️ Ortam hazırlanıyor...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

log("🧠 Model indiriliyor...")
base_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16)
base_model.config.pad_token_id = tokenizer.pad_token_id

log("🎯 LoRA adapter uygulanıyor...")
peft_config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    r=64,
    lora_alpha=16,
    lora_dropout=0.1,
    bias="none",
    fan_in_fan_out=False
)
model = get_peft_model(base_model, peft_config)
model.print_trainable_parameters()

log("📦 Parquet dosyaları listeleniyor...")
api = HfApi()
files = api.list_repo_files(repo_id=TOKENIZED_DATASET_ID, repo_type="dataset", token=HF_TOKEN)
selected_files = sorted([f for f in files if f.startswith("chunk_") and f.endswith(".parquet")])[START_NUMBER:END_NUMBER+1]

if not selected_files:
    log("⚠️ Parquet bulunamadı. Eğitim iptal.")
    exit(0)

training_args = TrainingArguments(
    output_dir=OUTPUT_DIR,
    per_device_train_batch_size=BATCH_SIZE,
    num_train_epochs=EPOCHS,
    save_strategy="epoch",
    save_total_limit=2,
    learning_rate=2e-4,
    disable_tqdm=True,
    logging_strategy="steps",
    logging_steps=10,
    report_to=[],
    bf16=True,
    fp16=False
)

collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

for file in selected_files:
    try:
        log(f"\n📄 Yükleniyor: {file}")
        dataset = load_dataset(
            path=TOKENIZED_DATASET_ID,
            data_files={"train": file},
            split="train",
            token=HF_TOKEN
        )
        log(f"🔍 {len(dataset)} örnek")
        if len(dataset) == 0:
            continue

        # prompt tanımı: tokenize edilmiş dataset içinde input_ids zaten var
        # sadece örnek bir tanesini loglayalım
        first_row = dataset[0]
        decoded_prompt = tokenizer.decode(first_row["input_ids"], skip_special_tokens=True)
        log(f"📌 Örnek prompt: {decoded_prompt[:200]}...")

        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=dataset,
            data_collator=collator
        )
        log("🚀 Eğitim başlıyor...")
        trainer.train()
        log("✅ Eğitim tamam.")
    except Exception as e:
        log(f"❌ Hata: {file}{e}")
        traceback.print_exc()

# === Zip
log("📦 Model zipleniyor...")
try:
    tmp_dir = os.path.join(ZIP_FOLDER, "temp_save")
    os.makedirs(tmp_dir, exist_ok=True)
    model.save_pretrained(tmp_dir)
    tokenizer.save_pretrained(tmp_dir)

    with zipfile.ZipFile(ZIP_PATH, "w", zipfile.ZIP_DEFLATED) as zipf:
        for root, _, files in os.walk(tmp_dir):
            for file in files:
                filepath = os.path.join(root, file)
                arcname = os.path.relpath(filepath, tmp_dir)
                zipf.write(filepath, arcname=os.path.join("output", arcname))
    log(f"✅ Zip oluşturuldu: {ZIP_PATH}")
except Exception as e:
    log(f"❌ Zipleme hatası: {e}")
    traceback.print_exc()

# === Upload
try:
    log("☁️ Hugging Face'e yükleniyor...")
    api.upload_file(
        path_or_fileobj=ZIP_PATH,
        path_in_repo=zip_name,
        repo_id=ZIP_UPLOAD_REPO,
        repo_type="model",
        token=HF_TOKEN
    )
    log("✅ Upload tamam.")
except Exception as e:
    log(f"❌ Upload hatası: {e}")
    traceback.print_exc()

log("⏸️ Eğitim tamamlandı. Servis bekleme modunda...")
while True:
    time.sleep(60)