mistral7b / inference_test_turkcell.py
ciyidogan's picture
Rename fine_tune_inference_test_turkcell.py to inference_test_turkcell.py
e37697b verified
import os, torch, threading, uvicorn, time, traceback, zipfile, random
from fastapi import FastAPI
from fastapi.responses import HTMLResponse, JSONResponse
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from huggingface_hub import hf_hub_download
from datetime import datetime
# === Ortam
HF_TOKEN = os.getenv("HF_TOKEN")
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
os.environ["TORCH_HOME"] = "/app/.torch_cache"
os.makedirs("/app/.torch_cache", exist_ok=True)
# === Ayarlar
MODEL_BASE = "TURKCELL/Turkcell-LLM-7b-v1" #"mistralai/Mistral-7B-Instruct-v0.2"
USE_FINE_TUNE = False
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
FINE_TUNE_ZIP = "trained_model_000_009.zip"
USE_SAMPLING = False
CONFIDENCE_THRESHOLD = -1.5
FALLBACK_ANSWERS = [
"Bu konuda maalesef bilgim yok.",
"Ne demek istediğinizi tam anlayamadım.",
"Bu soruya şu an yanıt veremiyorum."
]
# === Log
def log(message):
timestamp = time.strftime("%H:%M:%S")
print(f"[{timestamp}] {message}", flush=True)
# === FastAPI
app = FastAPI()
chat_history = []
model = None
tokenizer = None
class Message(BaseModel):
user_input: str
@app.get("/")
def health():
return {"status": "ok"}
@app.get("/start", response_class=HTMLResponse)
def root():
return """
<html>
<body>
<h2>Mistral 7B Instruct Chat</h2>
<textarea id="input" rows="4" cols="60" placeholder="Write your instruction..."></textarea><br>
<button onclick="send()">Gönder</button><br><br>
<label>Model Cevabı:</label><br>
<textarea id="output" rows="10" cols="80" readonly style="white-space: pre-wrap;"></textarea>
<script>
async function send() {
const input = document.getElementById("input").value;
const res = await fetch('/chat', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ user_input: input })
});
const data = await res.json();
document.getElementById('output').value = data.answer || data.error || 'Hata oluştu.';
}
</script>
</body>
</html>
"""
@app.post("/chat")
def chat(msg: Message):
global model, tokenizer
try:
if model is None or tokenizer is None:
return {"error": "Model veya tokenizer henüz yüklenmedi."}
user_input = msg.user_input.strip()
if not user_input:
return {"error": "Boş giriş"}
messages = [{"role": "user", "content": user_input}]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
if isinstance(input_ids, torch.Tensor):
input_ids = input_ids.to(model.device)
attention_mask = (input_ids != tokenizer.pad_token_id).long()
inputs = {"input_ids": input_ids, "attention_mask": attention_mask}
else:
inputs = {k: v.to(model.device) for k, v in input_ids.items()}
if "attention_mask" not in inputs:
inputs["attention_mask"] = (inputs["input_ids"] != tokenizer.pad_token_id).long()
generate_args = {
"max_new_tokens": 128,
"return_dict_in_generate": True,
"output_scores": True,
"do_sample": USE_SAMPLING,
"pad_token_id": tokenizer.pad_token_id,
"eos_token_id": tokenizer.eos_token_id,
"renormalize_logits": True
}
if USE_SAMPLING:
generate_args.update({
"temperature": 0.7,
"top_p": 0.9,
"top_k": 50
})
with torch.no_grad():
output = model.generate(**inputs, **generate_args)
decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True)
input_text = tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
answer = decoded.replace(input_text, "").strip()
if output.scores and len(output.scores) > 0:
first_token_score = output.scores[0][0]
if torch.isnan(first_token_score).any() or torch.isinf(first_token_score).any():
log("⚠️ Geçersiz logit (NaN/Inf) tespit edildi.")
return {"answer": random.choice(FALLBACK_ANSWERS)}
max_score = torch.max(first_token_score).item()
log(f"🔍 İlk token skoru: {max_score:.4f}")
if max_score < CONFIDENCE_THRESHOLD:
answer = random.choice(FALLBACK_ANSWERS)
chat_history.append({"user": user_input, "bot": answer})
log(f"Soru: {user_input} → Cevap: {answer[:60]}...")
return {"answer": answer, "chat_history": chat_history}
except Exception as e:
log(f"❌ /chat hatası: {e}")
traceback.print_exc()
return {"error": str(e)}
def detect_env():
return "cuda" if torch.cuda.is_available() else "cpu"
def setup_model():
global model, tokenizer
try:
device = detect_env()
dtype = torch.float32 # Dilersen torch.bfloat16 yapabilirsin
if USE_FINE_TUNE:
log("📦 Fine-tune zip indiriliyor...")
zip_path = hf_hub_download(
repo_id=FINE_TUNE_REPO,
filename=FINE_TUNE_ZIP,
repo_type="model",
token=HF_TOKEN
)
extract_dir = "/app/extracted"
os.makedirs(extract_dir, exist_ok=True)
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_dir)
tokenizer = AutoTokenizer.from_pretrained(os.path.join(extract_dir, "output"), use_fast=False)
base_model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=dtype).to(device)
model = PeftModel.from_pretrained(base_model, os.path.join(extract_dir, "output")).to(device)
else:
log("🧠 Ana model indiriliyor...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=dtype).to(device)
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
model.config.pad_token_id = tokenizer.pad_token_id
model.eval()
log("✅ Model başarıyla yüklendi.")
except Exception as e:
log(f"❌ Model yüklenirken hata: {e}")
traceback.print_exc()
def run_server():
log("🌐 Uvicorn başlatılıyor...")
uvicorn.run(app, host="0.0.0.0", port=7860)
log("===== Application Startup =====")
threading.Thread(target=setup_model, daemon=True).start()
threading.Thread(target=run_server, daemon=True).start()
while True:
time.sleep(60)