Update tokenize_and_upload.py
Browse files- tokenize_and_upload.py +120 -0
tokenize_and_upload.py
CHANGED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
from datasets import Dataset
|
4 |
+
from transformers import AutoTokenizer, AutoConfig
|
5 |
+
from datetime import datetime
|
6 |
+
from huggingface_hub import HfApi, create_repo, upload_folder, hf_hub_download
|
7 |
+
import traceback
|
8 |
+
import threading
|
9 |
+
import uvicorn
|
10 |
+
import time
|
11 |
+
from fastapi import FastAPI
|
12 |
+
from fastapi.responses import JSONResponse
|
13 |
+
|
14 |
+
# === Sabitler ===
|
15 |
+
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
|
16 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
17 |
+
SOURCE_DATASET_ID = "UcsTurkey/turkish-general-culture-chunks"
|
18 |
+
TRAIN_TARGET_DATASET_ID = "UcsTurkey/turkish-general-culture-tokenized"
|
19 |
+
BUFFER_SIZE = 5
|
20 |
+
START_CHUNK_NUMBER = 0
|
21 |
+
PROCESS_CHUNK_COUNT = 10
|
22 |
+
|
23 |
+
CHUNK_FOLDER = "/data/chunks"
|
24 |
+
PARQUET_FOLDER = "/data/tokenized_chunks"
|
25 |
+
CACHE_DIR = "/data/.hf_cache"
|
26 |
+
|
27 |
+
os.makedirs(CHUNK_FOLDER, exist_ok=True)
|
28 |
+
os.makedirs(PARQUET_FOLDER, exist_ok=True)
|
29 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
30 |
+
|
31 |
+
# ✅ Health check sunucusu
|
32 |
+
app = FastAPI()
|
33 |
+
|
34 |
+
@app.get("/")
|
35 |
+
def health():
|
36 |
+
return JSONResponse(content={"status": "ok"})
|
37 |
+
|
38 |
+
def run_health_server():
|
39 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
40 |
+
|
41 |
+
threading.Thread(target=run_health_server, daemon=True).start()
|
42 |
+
|
43 |
+
# 🕒 Zamanlı log fonksiyonu
|
44 |
+
def log(message):
|
45 |
+
timestamp = datetime.now().strftime("%H:%M:%S")
|
46 |
+
print(f"[{timestamp}] {message}")
|
47 |
+
os.sys.stdout.flush()
|
48 |
+
|
49 |
+
# === Tokenizer ===
|
50 |
+
os.environ["HF_HOME"] = CACHE_DIR
|
51 |
+
log(f"🔁 Tokenizer yükleniyor: {MODEL_NAME}")
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True, cache_dir=CACHE_DIR)
|
53 |
+
if tokenizer.pad_token is None:
|
54 |
+
log("ℹ️ pad_token tanımlı değil, eos_token atanıyor.")
|
55 |
+
tokenizer.pad_token = tokenizer.eos_token
|
56 |
+
|
57 |
+
config = AutoConfig.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
58 |
+
MAX_LEN = getattr(config, "max_position_embeddings", 2048)
|
59 |
+
|
60 |
+
# === Hugging Face API ===
|
61 |
+
api = HfApi()
|
62 |
+
files = api.list_repo_files(repo_id=SOURCE_DATASET_ID, repo_type="dataset", token=HF_TOKEN)
|
63 |
+
csv_files = sorted([f for f in files if f.endswith(".csv")])
|
64 |
+
selected_files = csv_files[START_CHUNK_NUMBER:START_CHUNK_NUMBER + PROCESS_CHUNK_COUNT]
|
65 |
+
|
66 |
+
buffer_counter = 0
|
67 |
+
|
68 |
+
def tokenize(example):
|
69 |
+
prompt = f"SORU: {example['instruction']}\nCEVAP: {example['output']}"
|
70 |
+
tokenized = tokenizer(prompt, truncation=True, padding="max_length", max_length=MAX_LEN)
|
71 |
+
tokenized["labels"] = [
|
72 |
+
-100 if token_id == tokenizer.pad_token_id else token_id for token_id in tokenized["input_ids"]
|
73 |
+
]
|
74 |
+
return tokenized
|
75 |
+
|
76 |
+
def upload_if_ready():
|
77 |
+
global buffer_counter
|
78 |
+
if os.listdir(PARQUET_FOLDER):
|
79 |
+
log(f"⬆️ BUFFER doldu. Hugging Face'e yükleniyor: {TRAIN_TARGET_DATASET_ID}")
|
80 |
+
create_repo(TRAIN_TARGET_DATASET_ID, repo_type="dataset", token=HF_TOKEN, exist_ok=True)
|
81 |
+
upload_folder(repo_id=TRAIN_TARGET_DATASET_ID, folder_path=PARQUET_FOLDER, repo_type="dataset", token=HF_TOKEN)
|
82 |
+
log("🧹 Upload sonrası klasör temizleniyor...")
|
83 |
+
for f in os.listdir(PARQUET_FOLDER):
|
84 |
+
os.remove(os.path.join(PARQUET_FOLDER, f))
|
85 |
+
buffer_counter = 0
|
86 |
+
|
87 |
+
for idx, filename in enumerate(selected_files):
|
88 |
+
log(f"\n📄 {idx+1}/{len(selected_files)} → {filename} işleniyor...")
|
89 |
+
try:
|
90 |
+
local_path = os.path.join(CHUNK_FOLDER, os.path.basename(filename))
|
91 |
+
hf_hub_download(
|
92 |
+
repo_id=SOURCE_DATASET_ID,
|
93 |
+
filename=filename,
|
94 |
+
local_dir=CHUNK_FOLDER,
|
95 |
+
token=HF_TOKEN,
|
96 |
+
repo_type="dataset"
|
97 |
+
)
|
98 |
+
df = pd.read_csv(local_path).dropna()
|
99 |
+
df = df[df["question"].str.strip().astype(bool) & df["answer"].str.strip().astype(bool)]
|
100 |
+
df = df.rename(columns={"question": "instruction", "answer": "output"})
|
101 |
+
log(f"✅ Geçerli satır sayısı: {len(df)}")
|
102 |
+
|
103 |
+
dataset = Dataset.from_pandas(df[["instruction", "output"]])
|
104 |
+
tokenized_dataset = dataset.map(tokenize)
|
105 |
+
parquet_path = os.path.join(PARQUET_FOLDER, filename.replace(".csv", ".parquet"))
|
106 |
+
tokenized_dataset.to_parquet(parquet_path, compression="snappy")
|
107 |
+
log(f"🎯 Tokenized parquet kaydedildi: {parquet_path}")
|
108 |
+
buffer_counter += 1
|
109 |
+
if buffer_counter >= BUFFER_SIZE:
|
110 |
+
upload_if_ready()
|
111 |
+
except Exception as e:
|
112 |
+
log(f"❌ Hata oluştu: {filename} → {e}")
|
113 |
+
traceback.print_exc()
|
114 |
+
continue
|
115 |
+
|
116 |
+
upload_if_ready()
|
117 |
+
|
118 |
+
log("✅ Tüm işlemler tamamlandı. Servis bekleme modunda...")
|
119 |
+
while True:
|
120 |
+
time.sleep(60)
|