Update inference_test_turkcell_with_intents.py
Browse files
inference_test_turkcell_with_intents.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# fine_tune_inference_with_intent.py
|
2 |
import os, torch, threading, uvicorn, time, traceback, zipfile, random, json, shutil, asyncio, re
|
3 |
from fastapi import FastAPI
|
4 |
from fastapi.responses import HTMLResponse, JSONResponse
|
@@ -7,6 +6,10 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequen
|
|
7 |
from peft import PeftModel
|
8 |
from datasets import Dataset
|
9 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# === Ortam
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
@@ -20,6 +23,10 @@ USE_FINE_TUNE = False
|
|
20 |
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
|
21 |
FINE_TUNE_ZIP = "trained_model_000_009.zip"
|
22 |
USE_SAMPLING = False
|
|
|
|
|
|
|
|
|
23 |
INTENT_CONFIDENCE_THRESHOLD = 0.5
|
24 |
LLM_CONFIDENCE_THRESHOLD = 0.2
|
25 |
TRAIN_CONFIDENCE_THRESHOLD = 0.7
|
@@ -29,19 +36,22 @@ FALLBACK_ANSWERS = [
|
|
29 |
"Bu soruya şu an yanıt veremiyorum."
|
30 |
]
|
31 |
|
|
|
32 |
INTENT_MODEL_PATH = "intent_model"
|
33 |
INTENT_MODEL_ID = "dbmdz/bert-base-turkish-cased"
|
34 |
INTENT_MODEL = None
|
35 |
INTENT_TOKENIZER = None
|
36 |
LABEL2ID = {}
|
37 |
INTENT_DEFINITIONS = {}
|
38 |
-
|
39 |
-
# === FastAPI
|
40 |
-
app = FastAPI()
|
41 |
-
chat_history = []
|
42 |
model = None
|
43 |
tokenizer = None
|
44 |
eos_token_id = None
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
class Message(BaseModel):
|
47 |
user_input: str
|
@@ -95,7 +105,6 @@ def background_training(intents):
|
|
95 |
for ex in intent["examples"]:
|
96 |
texts.append(ex)
|
97 |
labels.append(idx)
|
98 |
-
|
99 |
dataset = Dataset.from_dict({"text": texts, "label": labels})
|
100 |
tokenizer = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
|
101 |
config = AutoConfig.from_pretrained(INTENT_MODEL_ID)
|
@@ -109,7 +118,6 @@ def background_training(intents):
|
|
109 |
tokenized_data["input_ids"].append(out["input_ids"])
|
110 |
tokenized_data["attention_mask"].append(out["attention_mask"])
|
111 |
tokenized_data["label"].append(row["label"])
|
112 |
-
|
113 |
tokenized = Dataset.from_dict(tokenized_data)
|
114 |
tokenized.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
115 |
|
@@ -123,7 +131,7 @@ def background_training(intents):
|
|
123 |
)
|
124 |
trainer.train()
|
125 |
|
126 |
-
|
127 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
128 |
model.to(device)
|
129 |
input_ids_tensor = tokenized["input_ids"].to(device)
|
@@ -134,8 +142,7 @@ def background_training(intents):
|
|
134 |
predictions = outputs.logits.argmax(dim=-1).tolist()
|
135 |
|
136 |
actuals = tokenized["label"]
|
137 |
-
counts = {}
|
138 |
-
correct = {}
|
139 |
for pred, actual in zip(predictions, actuals):
|
140 |
intent = list(label2id.keys())[list(label2id.values()).index(actual)]
|
141 |
counts[intent] = counts.get(intent, 0) + 1
|
@@ -153,9 +160,7 @@ def background_training(intents):
|
|
153 |
tokenizer.save_pretrained(INTENT_MODEL_PATH)
|
154 |
with open(os.path.join(INTENT_MODEL_PATH, "label2id.json"), "w") as f:
|
155 |
json.dump(label2id, f)
|
156 |
-
|
157 |
log("✅ Intent eğitimi tamamlandı ve model kaydedildi.")
|
158 |
-
|
159 |
except Exception as e:
|
160 |
log(f"❌ Intent eğitimi hatası: {e}")
|
161 |
traceback.print_exc()
|
@@ -186,7 +191,6 @@ async def generate_response(text):
|
|
186 |
eos_token = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
187 |
input_ids = encodeds.to(model.device)
|
188 |
attention_mask = (input_ids != tokenizer.pad_token_id).long()
|
189 |
-
|
190 |
with torch.no_grad():
|
191 |
output = model.generate(
|
192 |
input_ids=input_ids,
|
@@ -198,14 +202,11 @@ async def generate_response(text):
|
|
198 |
return_dict_in_generate=True,
|
199 |
output_scores=True
|
200 |
)
|
201 |
-
|
202 |
if not USE_SAMPLING:
|
203 |
scores = torch.stack(output.scores, dim=1)
|
204 |
probs = torch.nn.functional.softmax(scores[0], dim=-1)
|
205 |
top_conf = probs.max().item()
|
206 |
-
else:
|
207 |
-
top_conf = None
|
208 |
-
|
209 |
decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip()
|
210 |
for tag in ["assistant", "<|im_start|>assistant"]:
|
211 |
start = decoded.find(tag)
|
@@ -214,45 +215,40 @@ async def generate_response(text):
|
|
214 |
break
|
215 |
return decoded, top_conf
|
216 |
|
217 |
-
def
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
return []
|
224 |
-
|
225 |
-
def execute_intent(intent_name, user_input):
|
226 |
-
if intent_name in INTENT_DEFINITIONS:
|
227 |
-
definition = INTENT_DEFINITIONS[intent_name]
|
228 |
-
variables = extract_parameters(definition.get("variables", []), user_input)
|
229 |
-
log(f"🚀 execute_intent('{intent_name}', {variables})")
|
230 |
-
return {"intent": intent_name, "parameters": variables}
|
231 |
-
return {"intent": intent_name, "parameters": []}
|
232 |
|
233 |
@app.post("/chat")
|
234 |
async def chat(msg: Message):
|
235 |
user_input = msg.user_input.strip()
|
236 |
try:
|
237 |
-
if model is None or tokenizer is None:
|
238 |
-
return {"error": "Model yüklenmedi."}
|
239 |
-
|
240 |
if INTENT_MODEL:
|
241 |
intent_task = asyncio.create_task(detect_intent(user_input))
|
242 |
response_task = asyncio.create_task(generate_response(user_input))
|
243 |
intent, intent_conf = await intent_task
|
244 |
log(f"🎯 Intent: {intent} (conf={intent_conf:.2f})")
|
245 |
if intent_conf > INTENT_CONFIDENCE_THRESHOLD and intent in INTENT_DEFINITIONS:
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
253 |
else:
|
254 |
response, response_conf = await generate_response(user_input)
|
255 |
if response_conf is not None and response_conf < LLM_CONFIDENCE_THRESHOLD:
|
|
|
|
|
|
|
|
|
256 |
return {"response": random.choice(FALLBACK_ANSWERS)}
|
257 |
return {"response": response}
|
258 |
except Exception as e:
|
@@ -264,25 +260,27 @@ def log(message):
|
|
264 |
print(f"[{timestamp}] {message}", flush=True)
|
265 |
|
266 |
def setup_model():
|
267 |
-
global model, tokenizer, eos_token_id
|
268 |
try:
|
269 |
log("🧠 setup_model() başladı")
|
270 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
271 |
log(f"📡 Kullanılan cihaz: {device}")
|
272 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE, use_fast=False)
|
273 |
-
log("📦 Tokenizer yüklendi.")
|
274 |
model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=torch.float32).to(device)
|
275 |
-
log("📦 Model indirildi ve yüklendi.")
|
276 |
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
|
277 |
model.config.pad_token_id = tokenizer.pad_token_id
|
278 |
eos_token_id = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
279 |
model.eval()
|
280 |
-
log("✅ Ana model
|
281 |
-
log(f"📦 Intent modeli indiriliyor: {INTENT_MODEL_ID}")
|
282 |
_ = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
|
283 |
_ = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_ID)
|
284 |
-
log("✅ Intent modeli
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
286 |
except Exception as e:
|
287 |
log(f"❌ setup_model() hatası: {e}")
|
288 |
traceback.print_exc()
|
|
|
|
|
1 |
import os, torch, threading, uvicorn, time, traceback, zipfile, random, json, shutil, asyncio, re
|
2 |
from fastapi import FastAPI
|
3 |
from fastapi.responses import HTMLResponse, JSONResponse
|
|
|
6 |
from peft import PeftModel
|
7 |
from datasets import Dataset
|
8 |
from datetime import datetime
|
9 |
+
import faiss
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
from sentence_transformers import SentenceTransformer
|
13 |
|
14 |
# === Ortam
|
15 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
23 |
FINE_TUNE_REPO = "UcsTurkey/trained-zips"
|
24 |
FINE_TUNE_ZIP = "trained_model_000_009.zip"
|
25 |
USE_SAMPLING = False
|
26 |
+
USE_RAG = True
|
27 |
+
RAG_INDEX_PATH = "/app/faiss/faiss_index_000_100.index"
|
28 |
+
RAG_METADATA_PATH = "/app/faiss/faiss_index_000_100_metadata.parquet"
|
29 |
+
RAG_EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
30 |
INTENT_CONFIDENCE_THRESHOLD = 0.5
|
31 |
LLM_CONFIDENCE_THRESHOLD = 0.2
|
32 |
TRAIN_CONFIDENCE_THRESHOLD = 0.7
|
|
|
36 |
"Bu soruya şu an yanıt veremiyorum."
|
37 |
]
|
38 |
|
39 |
+
# === Global Değişkenler
|
40 |
INTENT_MODEL_PATH = "intent_model"
|
41 |
INTENT_MODEL_ID = "dbmdz/bert-base-turkish-cased"
|
42 |
INTENT_MODEL = None
|
43 |
INTENT_TOKENIZER = None
|
44 |
LABEL2ID = {}
|
45 |
INTENT_DEFINITIONS = {}
|
|
|
|
|
|
|
|
|
46 |
model = None
|
47 |
tokenizer = None
|
48 |
eos_token_id = None
|
49 |
+
faiss_index = None
|
50 |
+
rag_metadata = None
|
51 |
+
rag_embedder = None
|
52 |
+
|
53 |
+
# === FastAPI
|
54 |
+
app = FastAPI()
|
55 |
|
56 |
class Message(BaseModel):
|
57 |
user_input: str
|
|
|
105 |
for ex in intent["examples"]:
|
106 |
texts.append(ex)
|
107 |
labels.append(idx)
|
|
|
108 |
dataset = Dataset.from_dict({"text": texts, "label": labels})
|
109 |
tokenizer = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
|
110 |
config = AutoConfig.from_pretrained(INTENT_MODEL_ID)
|
|
|
118 |
tokenized_data["input_ids"].append(out["input_ids"])
|
119 |
tokenized_data["attention_mask"].append(out["attention_mask"])
|
120 |
tokenized_data["label"].append(row["label"])
|
|
|
121 |
tokenized = Dataset.from_dict(tokenized_data)
|
122 |
tokenized.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
123 |
|
|
|
131 |
)
|
132 |
trainer.train()
|
133 |
|
134 |
+
log("🔧 Başarı raporu üretiliyor...")
|
135 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
136 |
model.to(device)
|
137 |
input_ids_tensor = tokenized["input_ids"].to(device)
|
|
|
142 |
predictions = outputs.logits.argmax(dim=-1).tolist()
|
143 |
|
144 |
actuals = tokenized["label"]
|
145 |
+
counts, correct = {}, {}
|
|
|
146 |
for pred, actual in zip(predictions, actuals):
|
147 |
intent = list(label2id.keys())[list(label2id.values()).index(actual)]
|
148 |
counts[intent] = counts.get(intent, 0) + 1
|
|
|
160 |
tokenizer.save_pretrained(INTENT_MODEL_PATH)
|
161 |
with open(os.path.join(INTENT_MODEL_PATH, "label2id.json"), "w") as f:
|
162 |
json.dump(label2id, f)
|
|
|
163 |
log("✅ Intent eğitimi tamamlandı ve model kaydedildi.")
|
|
|
164 |
except Exception as e:
|
165 |
log(f"❌ Intent eğitimi hatası: {e}")
|
166 |
traceback.print_exc()
|
|
|
191 |
eos_token = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
192 |
input_ids = encodeds.to(model.device)
|
193 |
attention_mask = (input_ids != tokenizer.pad_token_id).long()
|
|
|
194 |
with torch.no_grad():
|
195 |
output = model.generate(
|
196 |
input_ids=input_ids,
|
|
|
202 |
return_dict_in_generate=True,
|
203 |
output_scores=True
|
204 |
)
|
205 |
+
top_conf = None
|
206 |
if not USE_SAMPLING:
|
207 |
scores = torch.stack(output.scores, dim=1)
|
208 |
probs = torch.nn.functional.softmax(scores[0], dim=-1)
|
209 |
top_conf = probs.max().item()
|
|
|
|
|
|
|
210 |
decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip()
|
211 |
for tag in ["assistant", "<|im_start|>assistant"]:
|
212 |
start = decoded.find(tag)
|
|
|
215 |
break
|
216 |
return decoded, top_conf
|
217 |
|
218 |
+
def search_rag(query, top_k=1):
|
219 |
+
if faiss_index is None or rag_metadata is None:
|
220 |
+
return None
|
221 |
+
emb = rag_embedder.encode([query], convert_to_numpy=True)
|
222 |
+
D, I = faiss_index.search(emb, top_k)
|
223 |
+
results = rag_metadata.iloc[I[0]]
|
224 |
+
return results.iloc[0]["output"] if not results.empty else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
@app.post("/chat")
|
227 |
async def chat(msg: Message):
|
228 |
user_input = msg.user_input.strip()
|
229 |
try:
|
|
|
|
|
|
|
230 |
if INTENT_MODEL:
|
231 |
intent_task = asyncio.create_task(detect_intent(user_input))
|
232 |
response_task = asyncio.create_task(generate_response(user_input))
|
233 |
intent, intent_conf = await intent_task
|
234 |
log(f"🎯 Intent: {intent} (conf={intent_conf:.2f})")
|
235 |
if intent_conf > INTENT_CONFIDENCE_THRESHOLD and intent in INTENT_DEFINITIONS:
|
236 |
+
return execute_intent(intent, user_input)
|
237 |
+
response, response_conf = await response_task
|
238 |
+
if response_conf is not None and response_conf < LLM_CONFIDENCE_THRESHOLD:
|
239 |
+
if USE_RAG:
|
240 |
+
rag_result = search_rag(user_input)
|
241 |
+
if rag_result:
|
242 |
+
return {"response": rag_result}
|
243 |
+
return {"response": random.choice(FALLBACK_ANSWERS)}
|
244 |
+
return {"response": response}
|
245 |
else:
|
246 |
response, response_conf = await generate_response(user_input)
|
247 |
if response_conf is not None and response_conf < LLM_CONFIDENCE_THRESHOLD:
|
248 |
+
if USE_RAG:
|
249 |
+
rag_result = search_rag(user_input)
|
250 |
+
if rag_result:
|
251 |
+
return {"response": rag_result}
|
252 |
return {"response": random.choice(FALLBACK_ANSWERS)}
|
253 |
return {"response": response}
|
254 |
except Exception as e:
|
|
|
260 |
print(f"[{timestamp}] {message}", flush=True)
|
261 |
|
262 |
def setup_model():
|
263 |
+
global model, tokenizer, eos_token_id, faiss_index, rag_metadata, rag_embedder
|
264 |
try:
|
265 |
log("🧠 setup_model() başladı")
|
266 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
267 |
log(f"📡 Kullanılan cihaz: {device}")
|
268 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE, use_fast=False)
|
|
|
269 |
model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=torch.float32).to(device)
|
|
|
270 |
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
|
271 |
model.config.pad_token_id = tokenizer.pad_token_id
|
272 |
eos_token_id = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
|
273 |
model.eval()
|
274 |
+
log("✅ Ana model yüklendi ve hazır.")
|
|
|
275 |
_ = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
|
276 |
_ = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_ID)
|
277 |
+
log("✅ Intent modeli önbelleğe alındı.")
|
278 |
+
if USE_RAG:
|
279 |
+
log("📥 FAISS index yükleniyor...")
|
280 |
+
faiss_index = faiss.read_index(RAG_INDEX_PATH)
|
281 |
+
rag_metadata = pd.read_parquet(RAG_METADATA_PATH)
|
282 |
+
rag_embedder = SentenceTransformer(RAG_EMBEDDING_MODEL_NAME)
|
283 |
+
log("✅ FAISS index ve metadata yüklendi.")
|
284 |
except Exception as e:
|
285 |
log(f"❌ setup_model() hatası: {e}")
|
286 |
traceback.print_exc()
|