ciyidogan commited on
Commit
c0112d6
·
verified ·
1 Parent(s): abc60e9

Update inference_test_turkcell_with_intents.py

Browse files
inference_test_turkcell_with_intents.py CHANGED
@@ -1,4 +1,3 @@
1
- # fine_tune_inference_with_intent.py
2
  import os, torch, threading, uvicorn, time, traceback, zipfile, random, json, shutil, asyncio, re
3
  from fastapi import FastAPI
4
  from fastapi.responses import HTMLResponse, JSONResponse
@@ -20,7 +19,8 @@ USE_FINE_TUNE = False
20
  FINE_TUNE_REPO = "UcsTurkey/trained-zips"
21
  FINE_TUNE_ZIP = "trained_model_000_009.zip"
22
  USE_SAMPLING = False
23
- CONFIDENCE_THRESHOLD = -1.5
 
24
  FALLBACK_ANSWERS = [
25
  "Bu konuda maalesef bilgim yok.",
26
  "Ne demek istediğinizi tam anlayamadım.",
@@ -75,181 +75,6 @@ def root():
75
  </body></html>
76
  """
77
 
78
- @app.post("/train_intents", status_code=202)
79
- def train_intents(train_input: TrainInput):
80
- global INTENT_DEFINITIONS
81
-
82
- log("📥 POST /train_intents çağrıldı.")
83
- intents = train_input.intents
84
- INTENT_DEFINITIONS = {intent["name"]: intent for intent in intents}
85
-
86
- threading.Thread(target=lambda: background_training(intents), daemon=True).start()
87
- return {"status": "accepted", "message": "Intent eğitimi arka planda başlatıldı."}
88
-
89
- def background_training(intents):
90
- try:
91
- log("🔧 Intent eğitimi başlatıldı...")
92
-
93
- # 1. Verileri derle
94
- log("📌 Intent örnekleri toplanıyor...")
95
- texts, labels, label2id = [], [], {}
96
- for idx, intent in enumerate(intents):
97
- label2id[intent["name"]] = idx
98
- for ex in intent["examples"]:
99
- texts.append(ex)
100
- labels.append(idx)
101
- log(f"📌 Toplam örnek sayısı: {len(texts)}")
102
-
103
- # 2. Dataset oluştur
104
- log("📦 Dataset oluşturuluyor...")
105
- dataset = Dataset.from_dict({"text": texts, "label": labels})
106
-
107
- # 3. Tokenizer ve model yükle
108
- log("📥 Tokenizer yükleniyor...")
109
- tokenizer = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
110
-
111
- log("📦 Model konfigürasyonu hazırlanıyor...")
112
- config = AutoConfig.from_pretrained(INTENT_MODEL_ID)
113
- config.problem_type = "single_label_classification"
114
- config.num_labels = len(label2id)
115
-
116
- log("📦 Model yükleniyor...")
117
- model = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_ID, config=config)
118
- log("✅ Tokenizer ve model hazır.")
119
-
120
- # 4. Tokenize işlemi
121
- log("🧪 Tokenize işlemi başlatılıyor...")
122
- sample = dataset[0]["text"]
123
- log(f"📄 Örnek: {sample}")
124
- result = tokenizer(sample, truncation=True, padding=True)
125
- log(f"✅ Tokenizer sonucu: {result['input_ids'][:5]}")
126
-
127
- log("🔁 Manuel tokenize işlemi başlatılıyor...")
128
- tokenized_data = {"input_ids": [], "attention_mask": [], "label": []}
129
- for row in dataset:
130
- out = tokenizer(row["text"], truncation=True, padding="max_length", max_length=128)
131
- tokenized_data["input_ids"].append(out["input_ids"])
132
- tokenized_data["attention_mask"].append(out["attention_mask"])
133
- tokenized_data["label"].append(row["label"])
134
-
135
- tokenized = Dataset.from_dict(tokenized_data)
136
- tokenized.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
137
-
138
- log(f"📊 Eğitim örnek sayısı (manuel tokenized): {len(tokenized)}")
139
- if len(tokenized) == 0:
140
- log("❌ Tokenize edilmiş veri boş! Eğitim başlatılamıyor.")
141
- return
142
-
143
- # 5. Çıktı klasörü
144
- log("📁 Çıktı klasörü hazırlanıyor...")
145
- INTENT_OUTPUT_DIR = "/app/intent_train_output"
146
- os.makedirs(INTENT_OUTPUT_DIR, exist_ok=True)
147
-
148
- # 6. Eğitim ayarları
149
- log("⚙️ Eğitim ayarları yapılandırılıyor...")
150
- args = TrainingArguments(
151
- INTENT_OUTPUT_DIR,
152
- per_device_train_batch_size=4,
153
- num_train_epochs=3,
154
- logging_steps=10,
155
- save_strategy="no",
156
- report_to=[]
157
- )
158
-
159
- trainer = Trainer(
160
- model=model,
161
- args=args,
162
- train_dataset=tokenized,
163
- data_collator=default_data_collator
164
- )
165
-
166
- # 7. Eğitim başlatılıyor
167
- log("🚀 trainer.train() başlatılıyor...")
168
- trainer.train()
169
- log("✅ trainer.train() tamamlandı.")
170
-
171
- # 8. Model kaydediliyor
172
- log("💾 Model diske kaydediliyor...")
173
- if os.path.exists(INTENT_MODEL_PATH):
174
- shutil.rmtree(INTENT_MODEL_PATH)
175
- model.save_pretrained(INTENT_MODEL_PATH)
176
- tokenizer.save_pretrained(INTENT_MODEL_PATH)
177
- with open(os.path.join(INTENT_MODEL_PATH, "label2id.json"), "w") as f:
178
- json.dump(label2id, f)
179
-
180
- log("✅ Intent eğitimi tamamlandı ve model kaydedildi.")
181
-
182
- except Exception as e:
183
- log(f"❌ Intent eğitimi hatası: {e}")
184
- traceback.print_exc()
185
-
186
- @app.post("/load_intent_model")
187
- def load_intent_model():
188
- global INTENT_MODEL, INTENT_TOKENIZER, LABEL2ID
189
- try:
190
- INTENT_TOKENIZER = AutoTokenizer.from_pretrained(INTENT_MODEL_PATH)
191
- INTENT_MODEL = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_PATH)
192
- with open(os.path.join(INTENT_MODEL_PATH, "label2id.json")) as f:
193
- LABEL2ID = json.load(f)
194
- return {"status": "ok", "message": "Intent modeli yüklendi."}
195
- except Exception as e:
196
- return JSONResponse(content={"error": str(e)}, status_code=500)
197
-
198
- async def detect_intent(text):
199
- inputs = INTENT_TOKENIZER(text, return_tensors="pt")
200
- outputs = INTENT_MODEL(**inputs)
201
- pred_id = outputs.logits.argmax().item()
202
- id2label = {v: k for k, v in LABEL2ID.items()}
203
- return id2label[pred_id]
204
-
205
- def extract_parameters(variables_list, user_input):
206
- for pattern in variables_list:
207
- regex = re.sub(r"(\w+):\{(.+?)\}", r"(?P<\1>.+?)", pattern)
208
- match = re.match(regex, user_input)
209
- if match:
210
- return [{"key": k, "value": v} for k, v in match.groupdict().items()]
211
- return []
212
-
213
- def execute_intent(intent_name, user_input):
214
- if intent_name in INTENT_DEFINITIONS:
215
- definition = INTENT_DEFINITIONS[intent_name]
216
- variables = extract_parameters(definition.get("variables", []), user_input)
217
- log(f"🚀 execute_intent('{intent_name}', {variables})")
218
- return {"intent": intent_name, "parameters": variables}
219
- return {"intent": intent_name, "parameters": []}
220
-
221
- async def generate_response(text):
222
- messages = [{"role": "user", "content": text}]
223
- encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
224
- eos_token = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
225
-
226
- input_ids = encodeds.to(model.device)
227
- attention_mask = (input_ids != tokenizer.pad_token_id).long()
228
-
229
- with torch.no_grad():
230
- output = model.generate(
231
- input_ids=input_ids,
232
- attention_mask=attention_mask,
233
- max_new_tokens=128,
234
- do_sample=USE_SAMPLING,
235
- eos_token_id=eos_token,
236
- pad_token_id=tokenizer.pad_token_id,
237
- return_dict_in_generate=True,
238
- output_scores=True
239
- )
240
-
241
- try:
242
- decoded = tokenizer.decode(output.sequences[0], skip_special_tokens=True).strip()
243
- # Kullanıcı mesajlarını ve rolleri çıkar
244
- for tag in ["assistant", "<|im_start|>assistant"]:
245
- start = decoded.find(tag)
246
- if start != -1:
247
- return decoded[start + len(tag):].strip()
248
- return decoded
249
- except Exception as decode_error:
250
- log(f"❌ Decode hatası: {decode_error}")
251
- return random.choice(FALLBACK_ANSWERS)
252
-
253
  @app.post("/chat")
254
  async def chat(msg: Message):
255
  user_input = msg.user_input.strip()
@@ -261,53 +86,43 @@ async def chat(msg: Message):
261
  intent_task = asyncio.create_task(detect_intent(user_input))
262
  response_task = asyncio.create_task(generate_response(user_input))
263
  intent = await intent_task
 
 
 
 
 
 
 
 
264
  if intent in INTENT_DEFINITIONS:
265
  result = execute_intent(intent, user_input)
266
  return result
267
  else:
268
  response = await response_task
269
- return {"response": response}
270
  else:
271
  response = await generate_response(user_input)
272
- return {"response": response}
 
 
273
 
274
  except Exception as e:
275
  traceback.print_exc()
276
  return JSONResponse(content={"error": str(e)}, status_code=500)
277
 
278
- def log(message):
279
- timestamp = datetime.now().strftime("%H:%M:%S")
280
- print(f"[{timestamp}] {message}", flush=True)
281
-
282
- def setup_model():
283
- global model, tokenizer, eos_token_id
284
- try:
285
- log("🧠 setup_model() başladı")
286
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
287
-
288
- # === Ana model
289
- log("📥 Tokenizer indiriliyor...")
290
- tokenizer = AutoTokenizer.from_pretrained(MODEL_BASE, use_fast=False)
291
- log("🧠 Model indiriliyor...")
292
- model = AutoModelForCausalLM.from_pretrained(MODEL_BASE, torch_dtype=torch.float32).to(device)
293
- tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
294
- model.config.pad_token_id = tokenizer.pad_token_id
295
- eos_token_id = tokenizer("<|im_end|>", add_special_tokens=False)["input_ids"][0]
296
- model.eval()
297
- log("✅ Ana model eval() çağrıldı")
298
-
299
- # === Intent BERT modeli önden indiriliyor (ama kullanılmıyor)
300
- log(f"📦 Intent modeli indiriliyor: {INTENT_MODEL_ID}")
301
- _ = AutoTokenizer.from_pretrained(INTENT_MODEL_ID)
302
- _ = AutoModelForSequenceClassification.from_pretrained(INTENT_MODEL_ID)
303
- log("✅ Intent modeli indirildi (önbelleğe alındı).")
304
 
305
- log("✔️ Model başarıyla yüklendi ve sohbet için hazır.")
306
- except Exception as e:
307
- log(f" setup_model() hatası: {e}")
308
- traceback.print_exc()
309
 
310
- threading.Thread(target=setup_model, daemon=True).start()
311
- threading.Thread(target=lambda: uvicorn.run(app, host="0.0.0.0", port=7860), daemon=True).start()
312
- while True:
313
- time.sleep(60)
 
 
1
  import os, torch, threading, uvicorn, time, traceback, zipfile, random, json, shutil, asyncio, re
2
  from fastapi import FastAPI
3
  from fastapi.responses import HTMLResponse, JSONResponse
 
19
  FINE_TUNE_REPO = "UcsTurkey/trained-zips"
20
  FINE_TUNE_ZIP = "trained_model_000_009.zip"
21
  USE_SAMPLING = False
22
+ GENERATION_CONFIDENCE_THRESHOLD = -1.5
23
+ INTENT_CONFIDENCE_THRESHOLD = 0.5
24
  FALLBACK_ANSWERS = [
25
  "Bu konuda maalesef bilgim yok.",
26
  "Ne demek istediğinizi tam anlayamadım.",
 
75
  </body></html>
76
  """
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  @app.post("/chat")
79
  async def chat(msg: Message):
80
  user_input = msg.user_input.strip()
 
86
  intent_task = asyncio.create_task(detect_intent(user_input))
87
  response_task = asyncio.create_task(generate_response(user_input))
88
  intent = await intent_task
89
+
90
+ if intent is None:
91
+ log("🟡 Intent confidence düşük. Ana modele yönlendiriliyor.")
92
+ response = await response_task
93
+ if isinstance(response, dict) and response.get("score", 0) < GENERATION_CONFIDENCE_THRESHOLD:
94
+ return {"response": random.choice(FALLBACK_ANSWERS)}
95
+ return {"response": response if isinstance(response, str) else response.get("text", "")}
96
+
97
  if intent in INTENT_DEFINITIONS:
98
  result = execute_intent(intent, user_input)
99
  return result
100
  else:
101
  response = await response_task
102
+ return {"response": response if isinstance(response, str) else response.get("text", "")}
103
  else:
104
  response = await generate_response(user_input)
105
+ if isinstance(response, dict) and response.get("score", 0) < GENERATION_CONFIDENCE_THRESHOLD:
106
+ return {"response": random.choice(FALLBACK_ANSWERS)}
107
+ return {"response": response if isinstance(response, str) else response.get("text", "")}
108
 
109
  except Exception as e:
110
  traceback.print_exc()
111
  return JSONResponse(content={"error": str(e)}, status_code=500)
112
 
113
+ async def detect_intent(text):
114
+ inputs = INTENT_TOKENIZER(text, return_tensors="pt")
115
+ outputs = INTENT_MODEL(**inputs)
116
+ logits = outputs.logits
117
+ probs = torch.nn.functional.softmax(logits, dim=1)
118
+ pred_id = logits.argmax().item()
119
+ confidence = probs[0][pred_id].item()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
+ id2label = {v: k for k, v in LABEL2ID.items()}
122
+ intent_name = id2label[pred_id]
123
+ log(f"🔍 Intent tahmini: {intent_name} (confidence: {confidence:.2f})")
 
124
 
125
+ if confidence < INTENT_CONFIDENCE_THRESHOLD:
126
+ log(f"⚠️ Düşük confidence ({confidence:.2f}) nedeniyle intent boş döndü.")
127
+ return None
128
+ return intent_name