File size: 2,899 Bytes
444adae
 
 
 
089f657
444adae
089f657
444adae
eb8847f
444adae
 
 
 
 
fffe472
444adae
 
 
 
 
 
eb8847f
 
444adae
 
 
eb8847f
089f657
c7a5eec
fcff67e
 
 
 
 
eb8847f
 
089f657
 
eb8847f
089f657
 
fcff67e
089f657
 
444adae
fcff67e
444adae
f8a28b3
444adae
fcff67e
 
089f657
ce706b9
fcff67e
089f657
eb8847f
 
 
 
515404c
eb8847f
 
 
 
 
f8a28b3
eb8847f
 
 
 
 
 
 
f8a28b3
eb8847f
 
f8a28b3
 
eb8847f
089f657
eb8847f
 
 
ce706b9
 
 
 
 
fcff67e
089f657
 
fcff67e
089f657
 
444adae
 
 
 
 
 
 
 
 
 
 
fcff67e
444adae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import sys
import time
import threading
import traceback
from datetime import datetime
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM

# === Ortam değişkenleri
os.environ.setdefault("HF_HOME", "/app/.cache")
os.environ.setdefault("HF_HUB_CACHE", "/app/.cache")

# === Zamanlı log fonksiyonu
def log(message):
    timestamp = datetime.now().strftime("%H:%M:%S")
    print(f"[{timestamp}] {message}", flush=True)

# === FastAPI başlat
app = FastAPI()
tokenizer = None
model = None

@app.on_event("startup")
def load_model():
    global tokenizer, model
    try:
        model_name = "ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1"
        log(f"⬇️ Model yükleme başlatılıyor: {model_name}")

        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype="auto",  # A100 için bf16
            device_map="auto"
        )

        log("✅ Model ve tokenizer başarıyla hazır.")

    except Exception as e:
        log(f"❌ Model yükleme hatası: {e}")
        traceback.print_exc()
        raise

class UserInputRequest(BaseModel):
    user_input: str
    system_prompt: str

@app.post("/generate")
def generate(req: UserInputRequest):
    try:
        start_time = time.time()
        log(f"💬 Kullanıcı isteği alındı: {req.user_input}")

        messages = [
            {"role": "system", "content": req.system_prompt},
            {"role": "user", "content": req.user_input}
        ]

        input_ids = tokenizer.apply_chat_template(
            messages,
            add_generation_prompt=True,
            return_tensors="pt"
        ).to(model.device)

        terminators = [
            tokenizer.eos_token_id,
            tokenizer.convert_tokens_to_ids("<|eot_id|>")
        ]

        outputs = model.generate(
            input_ids,
            max_new_tokens=200,
            eos_token_id=terminators,
            do_sample=False,
            temperature=0.0,
            top_p=1.0,
            repetition_penalty=1.0
        )

        response = outputs[0][input_ids.shape[-1]:]
        answer = tokenizer.decode(response, skip_special_tokens=True)

        end_time = time.time()
        elapsed = end_time - start_time
        log(f"✅ Yanıt süresi: {elapsed:.2f} saniye")

        return {"response": answer}

    except Exception as e:
        log(f"❌ /generate hatası: {e}")
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/")
def health():
    return {"status": "ok"}

def run_health_server():
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)

threading.Thread(target=run_health_server, daemon=True).start()

log("⏸️ Uygulama bekleme modunda...")
while True:
    time.sleep(60)