|
import os |
|
import sys |
|
import time |
|
import threading |
|
import traceback |
|
from datetime import datetime |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from transformers import pipeline |
|
from unsloth import FastLanguageModel |
|
|
|
|
|
os.environ.setdefault("HF_HOME", "/app/.cache") |
|
os.environ.setdefault("HF_HUB_CACHE", "/app/.cache") |
|
os.environ.setdefault("BITSANDBYTES_NOWELCOME", "1") |
|
|
|
|
|
def log(message): |
|
timestamp = datetime.now().strftime("%H:%M:%S") |
|
print(f"[{timestamp}] {message}", flush=True) |
|
|
|
|
|
app = FastAPI() |
|
pipe = None |
|
model = None |
|
tokenizer = None |
|
|
|
@app.on_event("startup") |
|
def load_model(): |
|
global pipe, model, tokenizer |
|
try: |
|
model_name = "atasoglu/Turkish-Llama-3-8B-function-calling" |
|
log(f"⬇️ [1] Model yükleme başlatılıyor: {model_name}") |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=model_name, |
|
load_in_4bit=True, |
|
device_map="auto" |
|
) |
|
log("✅ [2] Model ve tokenizer çekildi.") |
|
|
|
FastLanguageModel.for_inference(model) |
|
log("✅ [3] Model inference moduna alındı.") |
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
device_map="auto" |
|
) |
|
log("✅ [4] Pipeline başarıyla kuruldu, test etmeye hazır.") |
|
|
|
except Exception as e: |
|
log(f"❌ [ERROR] Model yükleme sırasında hata: {e}") |
|
traceback.print_exc() |
|
raise |
|
|
|
class TestRequest(BaseModel): |
|
user_input: str |
|
|
|
@app.post("/test") |
|
def test(req: TestRequest): |
|
try: |
|
prompt = f"Kullanıcı: {req.user_input}\nAsistan:" |
|
log(f"💬 [5] Prompt alındı: {req.user_input}") |
|
|
|
inputs = tokenizer([prompt], return_tensors="pt") |
|
log("🧠 [6] Tokenizer çıktılarını hazırladı, generate başlıyor...") |
|
|
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=256, |
|
temperature=0.2, |
|
top_p=0.95, |
|
repetition_penalty=1.1, |
|
do_sample=True |
|
) |
|
log("✅ [7] Generate tamamlandı, cevap dönülüyor.") |
|
|
|
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
answer_clean = answer.split("Asistan:")[-1].strip() |
|
return {"response": answer_clean} |
|
|
|
except Exception as e: |
|
log(f"❌ [ERROR] /test sırasında hata: {e}") |
|
traceback.print_exc() |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.get("/") |
|
def health(): |
|
return {"status": "ok"} |
|
|
|
def run_health_server(): |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|
|
threading.Thread(target=run_health_server, daemon=True).start() |
|
|
|
log("⏸️ [0] Uygulama bekleme modunda, startup bekleniyor...") |
|
while True: |
|
time.sleep(60) |
|
|