Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ import traceback
|
|
| 6 |
from datetime import datetime
|
| 7 |
from fastapi import FastAPI, HTTPException
|
| 8 |
from pydantic import BaseModel
|
| 9 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
from contextlib import asynccontextmanager
|
| 11 |
|
| 12 |
# === Ortam değişkenleri
|
|
@@ -33,13 +33,18 @@ async def lifespan(app: FastAPI):
|
|
| 33 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 34 |
tokenizer.pad_token = tokenizer.eos_token
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
model_name,
|
| 38 |
device_map="auto",
|
| 39 |
-
|
| 40 |
)
|
| 41 |
|
| 42 |
-
log("✅ Model ve tokenizer başarıyla hazır (8-bit quantized).")
|
| 43 |
yield # Uygulama burada çalışır
|
| 44 |
|
| 45 |
except Exception as e:
|
|
@@ -57,19 +62,22 @@ class UserInputRequest(BaseModel):
|
|
| 57 |
@app.post("/generate")
|
| 58 |
def generate(req: UserInputRequest):
|
| 59 |
try:
|
| 60 |
-
|
| 61 |
log(f"💬 Kullanıcı isteği alındı: {req.user_input}")
|
| 62 |
|
|
|
|
|
|
|
| 63 |
messages = [
|
| 64 |
{"role": "system", "content": req.system_prompt},
|
| 65 |
{"role": "user", "content": req.user_input}
|
| 66 |
]
|
| 67 |
-
|
| 68 |
chat_input = tokenizer.apply_chat_template(
|
| 69 |
messages,
|
| 70 |
add_generation_prompt=True,
|
| 71 |
return_tensors="pt"
|
| 72 |
).to(model.device)
|
|
|
|
|
|
|
| 73 |
|
| 74 |
input_len = chat_input.shape[-1]
|
| 75 |
total_ctx = model.config.max_position_embeddings if hasattr(model.config, 'max_position_embeddings') else 4096
|
|
@@ -77,23 +85,30 @@ def generate(req: UserInputRequest):
|
|
| 77 |
|
| 78 |
log(f"ℹ️ Input uzunluğu: {input_len}, max_new_tokens ayarlandı: {max_new_tokens}")
|
| 79 |
|
|
|
|
|
|
|
| 80 |
terminators = [
|
| 81 |
tokenizer.eos_token_id,
|
| 82 |
tokenizer.convert_tokens_to_ids("<|eot_id|>") if "<|eot_id|>" in tokenizer.get_vocab() else tokenizer.eos_token_id
|
| 83 |
]
|
| 84 |
-
|
| 85 |
outputs = model.generate(
|
| 86 |
input_ids=chat_input,
|
| 87 |
max_new_tokens=max_new_tokens,
|
| 88 |
eos_token_id=terminators
|
| 89 |
)
|
|
|
|
|
|
|
| 90 |
|
|
|
|
|
|
|
| 91 |
response = outputs[0][input_len:]
|
| 92 |
answer = tokenizer.decode(response, skip_special_tokens=True)
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
log(f"✅
|
| 97 |
|
| 98 |
return {"response": answer}
|
| 99 |
|
|
|
|
| 6 |
from datetime import datetime
|
| 7 |
from fastapi import FastAPI, HTTPException
|
| 8 |
from pydantic import BaseModel
|
| 9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 10 |
from contextlib import asynccontextmanager
|
| 11 |
|
| 12 |
# === Ortam değişkenleri
|
|
|
|
| 33 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 34 |
tokenizer.pad_token = tokenizer.eos_token
|
| 35 |
|
| 36 |
+
quant_config = BitsAndBytesConfig(
|
| 37 |
+
load_in_8bit=True, # ✅ 8-bit quantization (modern yöntem)
|
| 38 |
+
llm_int8_threshold=6.0
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
model = AutoModelForCausalLM.from_pretrained(
|
| 42 |
model_name,
|
| 43 |
device_map="auto",
|
| 44 |
+
quantization_config=quant_config
|
| 45 |
)
|
| 46 |
|
| 47 |
+
log("✅ Model ve tokenizer başarıyla hazır (8-bit quantized, BitsAndBytesConfig).")
|
| 48 |
yield # Uygulama burada çalışır
|
| 49 |
|
| 50 |
except Exception as e:
|
|
|
|
| 62 |
@app.post("/generate")
|
| 63 |
def generate(req: UserInputRequest):
|
| 64 |
try:
|
| 65 |
+
overall_start = time.time()
|
| 66 |
log(f"💬 Kullanıcı isteği alındı: {req.user_input}")
|
| 67 |
|
| 68 |
+
# === Apply chat template
|
| 69 |
+
t0 = time.time()
|
| 70 |
messages = [
|
| 71 |
{"role": "system", "content": req.system_prompt},
|
| 72 |
{"role": "user", "content": req.user_input}
|
| 73 |
]
|
|
|
|
| 74 |
chat_input = tokenizer.apply_chat_template(
|
| 75 |
messages,
|
| 76 |
add_generation_prompt=True,
|
| 77 |
return_tensors="pt"
|
| 78 |
).to(model.device)
|
| 79 |
+
t1 = time.time()
|
| 80 |
+
log(f"⏱️ apply_chat_template süresi: {t1 - t0:.2f} saniye")
|
| 81 |
|
| 82 |
input_len = chat_input.shape[-1]
|
| 83 |
total_ctx = model.config.max_position_embeddings if hasattr(model.config, 'max_position_embeddings') else 4096
|
|
|
|
| 85 |
|
| 86 |
log(f"ℹ️ Input uzunluğu: {input_len}, max_new_tokens ayarlandı: {max_new_tokens}")
|
| 87 |
|
| 88 |
+
# === Generate
|
| 89 |
+
t2 = time.time()
|
| 90 |
terminators = [
|
| 91 |
tokenizer.eos_token_id,
|
| 92 |
tokenizer.convert_tokens_to_ids("<|eot_id|>") if "<|eot_id|>" in tokenizer.get_vocab() else tokenizer.eos_token_id
|
| 93 |
]
|
|
|
|
| 94 |
outputs = model.generate(
|
| 95 |
input_ids=chat_input,
|
| 96 |
max_new_tokens=max_new_tokens,
|
| 97 |
eos_token_id=terminators
|
| 98 |
)
|
| 99 |
+
t3 = time.time()
|
| 100 |
+
log(f"⏱️ generate süresi: {t3 - t2:.2f} saniye")
|
| 101 |
|
| 102 |
+
# === Decode
|
| 103 |
+
t4 = time.time()
|
| 104 |
response = outputs[0][input_len:]
|
| 105 |
answer = tokenizer.decode(response, skip_special_tokens=True)
|
| 106 |
+
t5 = time.time()
|
| 107 |
+
log(f"⏱️ decode süresi: {t5 - t4:.2f} saniye")
|
| 108 |
|
| 109 |
+
overall_end = time.time()
|
| 110 |
+
overall_elapsed = overall_end - overall_start
|
| 111 |
+
log(f"✅ Toplam yanıt süresi: {overall_elapsed:.2f} saniye")
|
| 112 |
|
| 113 |
return {"response": answer}
|
| 114 |
|