Update app.py
Browse files
app.py
CHANGED
@@ -1,187 +1,97 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
import time
|
4 |
-
import
|
5 |
-
import traceback
|
6 |
from datetime import datetime
|
7 |
-
from fastapi import FastAPI,
|
8 |
-
|
9 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
-
from contextlib import asynccontextmanager
|
11 |
import torch
|
|
|
12 |
|
13 |
-
#
|
14 |
-
os.environ.setdefault("HF_HOME", "/app/.cache")
|
15 |
-
os.environ.setdefault("HF_HUB_CACHE", "/app/.cache")
|
16 |
-
|
17 |
-
# === Zamanlı log fonksiyonu
|
18 |
def log(message):
|
19 |
timestamp = datetime.now().strftime("%H:%M:%S")
|
20 |
-
print(f"[{timestamp}] {message}"
|
21 |
-
|
22 |
-
# === Helper fonksiyonlar
|
23 |
-
def trim_history(messages, max_blocks=20):
|
24 |
-
return messages[-max_blocks:]
|
25 |
-
|
26 |
-
def enforce_token_budget(tokenizer, system_prompt, history_messages, user_input, total_ctx=4096, max_new_tokens=128):
|
27 |
-
system_tokens = len(tokenizer(system_prompt)['input_ids'])
|
28 |
-
user_tokens = len(tokenizer(user_input)['input_ids'])
|
29 |
-
history_tokens = sum(len(tokenizer(m['content'])['input_ids']) for m in history_messages)
|
30 |
-
|
31 |
-
log(f"ℹ️ Token hesaplama -> System: {system_tokens}, History: {history_tokens}, User: {user_tokens}")
|
32 |
-
|
33 |
-
available_budget = total_ctx - max_new_tokens
|
34 |
-
total_input_tokens = system_tokens + history_tokens + user_tokens
|
35 |
-
|
36 |
-
if total_input_tokens <= available_budget:
|
37 |
-
log(f"✅ Token bütçesi uygun (toplam {total_input_tokens}/{available_budget})")
|
38 |
-
return history_messages
|
39 |
-
|
40 |
-
trimmed_history = history_messages.copy()
|
41 |
-
while trimmed_history:
|
42 |
-
current_history_tokens = sum(len(tokenizer(m['content'])['input_ids']) for m in trimmed_history)
|
43 |
-
total_input_tokens = system_tokens + current_history_tokens + user_tokens
|
44 |
-
if total_input_tokens <= available_budget:
|
45 |
-
break
|
46 |
-
|
47 |
-
removed = trimmed_history.pop(0)
|
48 |
-
removed_tokens = len(tokenizer(removed['content'])['input_ids'])
|
49 |
-
log(f"⚠️ Token bütçesi aşıldı, en eski {removed['role']} mesajı ({removed_tokens} token) atıldı.")
|
50 |
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
tokenizer = None
|
58 |
-
model = None
|
59 |
-
|
60 |
-
# === Lifespan tanımı
|
61 |
-
@asynccontextmanager
|
62 |
-
async def lifespan(app: FastAPI):
|
63 |
-
global tokenizer, model
|
64 |
-
try:
|
65 |
-
model_name = "ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1"
|
66 |
-
log(f"⬇️ Model yükleme başlatılıyor: {model_name}")
|
67 |
-
|
68 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
69 |
-
tokenizer.pad_token = tokenizer.eos_token
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
bnb_4bit_compute_dtype=torch.float16 # ✅ float16 hızlandırma
|
74 |
-
)
|
75 |
|
76 |
-
|
77 |
-
model_name,
|
78 |
-
device_map="auto",
|
79 |
-
quantization_config=quant_config
|
80 |
-
)
|
81 |
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
|
98 |
-
@app.post("/generate")
|
99 |
-
def generate(req: UserInputRequest):
|
100 |
try:
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
trimmed_history = trim_history(req.history, max_blocks=20)
|
105 |
-
trimmed_history = enforce_token_budget(tokenizer, req.system_prompt, trimmed_history, req.user_input, total_ctx=4096, max_new_tokens=128)
|
106 |
-
|
107 |
-
# === Apply chat template
|
108 |
-
t0 = time.time()
|
109 |
-
messages = [{"role": "system", "content": req.system_prompt}] + trimmed_history + [{"role": "user", "content": req.user_input}]
|
110 |
-
chat_template_raw = tokenizer.apply_chat_template(
|
111 |
messages,
|
112 |
add_generation_prompt=True,
|
113 |
-
return_tensors=
|
114 |
-
)
|
115 |
-
if chat_template_raw is None:
|
116 |
-
chat_template_str = ""
|
117 |
-
elif isinstance(chat_template_raw, str):
|
118 |
-
chat_template_str = chat_template_raw
|
119 |
-
else:
|
120 |
-
chat_template_str = str(chat_template_raw)
|
121 |
-
t1 = time.time()
|
122 |
-
log(f"⏱️ apply_chat_template süresi: {t1 - t0:.2f} saniye")
|
123 |
-
|
124 |
-
# === Tokenizer ile input_ids + attention_mask hazırla
|
125 |
-
t2 = time.time()
|
126 |
-
tokenized_inputs = tokenizer(
|
127 |
-
chat_template_str,
|
128 |
-
return_tensors="pt",
|
129 |
-
padding=True
|
130 |
).to(model.device)
|
131 |
-
|
132 |
-
attention_mask = tokenized_inputs['attention_mask']
|
133 |
-
t3 = time.time()
|
134 |
-
log(f"⏱️ tokenize süresi: {t3 - t2:.2f} saniye")
|
135 |
-
|
136 |
-
input_len = input_ids.shape[-1]
|
137 |
-
total_ctx = model.config.max_position_embeddings if hasattr(model.config, 'max_position_embeddings') else 4096
|
138 |
-
max_new_tokens = min(128, max(1, total_ctx - input_len))
|
139 |
|
140 |
-
log(f"ℹ️ Input uzunluğu: {input_len}, max_new_tokens ayarlandı: {max_new_tokens}")
|
141 |
-
|
142 |
-
# === Generate
|
143 |
-
t4 = time.time()
|
144 |
terminators = [
|
145 |
tokenizer.eos_token_id,
|
146 |
-
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
147 |
]
|
|
|
|
|
|
|
148 |
outputs = model.generate(
|
149 |
-
input_ids
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
153 |
)
|
154 |
-
|
155 |
-
log(f"⏱️ generate süresi: {t5 - t4:.2f} saniye")
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
t7 = time.time()
|
162 |
-
log(f"⏱️ decode süresi: {t7 - t6:.2f} saniye")
|
163 |
-
|
164 |
-
overall_end = time.time()
|
165 |
-
overall_elapsed = overall_end - overall_start
|
166 |
-
log(f"✅ Toplam yanıt süresi: {overall_elapsed:.2f} saniye")
|
167 |
-
|
168 |
-
return {"response": answer}
|
169 |
|
170 |
except Exception as e:
|
171 |
-
log(f"❌
|
172 |
-
|
173 |
-
raise HTTPException(status_code=500, detail=str(e))
|
174 |
-
|
175 |
-
@app.get("/")
|
176 |
-
def health():
|
177 |
-
return {"status": "ok"}
|
178 |
-
|
179 |
-
def run_health_server():
|
180 |
-
import uvicorn
|
181 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
182 |
-
|
183 |
-
threading.Thread(target=run_health_server, daemon=True).start()
|
184 |
|
185 |
-
|
|
|
186 |
while True:
|
187 |
time.sleep(60)
|
|
|
|
|
|
|
1 |
import time
|
2 |
+
import sys
|
|
|
3 |
from datetime import datetime
|
4 |
+
from fastapi import FastAPI, Request
|
5 |
+
import uvicorn
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
7 |
import torch
|
8 |
+
import threading
|
9 |
|
10 |
+
# 🕒 Zamanlı log fonksiyonu
|
|
|
|
|
|
|
|
|
11 |
def log(message):
|
12 |
timestamp = datetime.now().strftime("%H:%M:%S")
|
13 |
+
print(f"[{timestamp}] {message}")
|
14 |
+
sys.stdout.flush()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# ✅ Health check sunucusu
|
17 |
+
app = FastAPI()
|
18 |
|
19 |
+
@app.get("/")
|
20 |
+
def health():
|
21 |
+
return {"status": "ok"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
def run_health_server():
|
24 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
25 |
|
26 |
+
threading.Thread(target=run_health_server, daemon=True).start()
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# ✅ Model yükleme
|
29 |
+
MODEL_ID = "ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1"
|
30 |
+
log("⬇️ Model ve tokenizer yükleme başlatılıyor...")
|
31 |
+
start_time = time.time()
|
32 |
+
try:
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
34 |
+
model = AutoModelForCausalLM.from_pretrained(
|
35 |
+
MODEL_ID,
|
36 |
+
torch_dtype=torch.bfloat16,
|
37 |
+
device_map="auto",
|
38 |
+
)
|
39 |
+
log(f"✅ Model yüklendi. Süre: {time.time() - start_time:.2f} sn")
|
40 |
+
except Exception as e:
|
41 |
+
log(f"❌ Model yükleme hatası: {e}")
|
42 |
+
sys.exit(1)
|
43 |
|
44 |
+
@app.post("/generate")
|
45 |
+
async def generate(request: Request):
|
46 |
+
req_data = await request.json()
|
47 |
+
user_input = req_data.get("user_input", "")
|
48 |
+
system_prompt = req_data.get("system_prompt", "")
|
49 |
|
50 |
+
if not user_input or not system_prompt:
|
51 |
+
return {"error": "user_input ve system_prompt zorunludur."}
|
52 |
|
53 |
+
messages = [
|
54 |
+
{"role": "system", "content": system_prompt},
|
55 |
+
{"role": "user", "content": user_input},
|
56 |
+
]
|
57 |
|
|
|
|
|
58 |
try:
|
59 |
+
log("🧩 Input preparation başlatılıyor...")
|
60 |
+
prep_start = time.time()
|
61 |
+
input_ids = tokenizer.apply_chat_template(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
messages,
|
63 |
add_generation_prompt=True,
|
64 |
+
return_tensors="pt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
).to(model.device)
|
66 |
+
log(f"✅ Input hazırlandı. Süre: {time.time() - prep_start:.2f} sn")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
|
|
|
|
|
|
68 |
terminators = [
|
69 |
tokenizer.eos_token_id,
|
70 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
71 |
]
|
72 |
+
|
73 |
+
log("🧠 Generate çağrısı başlatılıyor...")
|
74 |
+
gen_start = time.time()
|
75 |
outputs = model.generate(
|
76 |
+
input_ids,
|
77 |
+
max_new_tokens=256,
|
78 |
+
eos_token_id=terminators,
|
79 |
+
do_sample=True,
|
80 |
+
temperature=0.6,
|
81 |
+
top_p=0.9,
|
82 |
)
|
83 |
+
log(f"✅ Generate tamamlandı. Süre: {time.time() - gen_start:.2f} sn")
|
|
|
84 |
|
85 |
+
response = outputs[0][input_ids.shape[-1]:]
|
86 |
+
decoded_output = tokenizer.decode(response, skip_special_tokens=True)
|
87 |
+
log("✅ Cevap başarıyla decode edildi.")
|
88 |
+
return {"response": decoded_output}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
except Exception as e:
|
91 |
+
log(f"❌ Generate hatası: {e}")
|
92 |
+
return {"error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# 🧘 Eğitim sonrası uygulama restart olmasın diye bekleme
|
95 |
+
log("⏸️ Uygulama hazır, bekleme modunda...")
|
96 |
while True:
|
97 |
time.sleep(60)
|