Spaces:
Running
Running
File size: 1,666 Bytes
2ebc710 5b9baff fabf362 5b9baff 2ebc710 fabf362 5b9baff ab9088f fabf362 2ebc710 fabf362 2ebc710 ab9088f fabf362 5b9baff fabf362 ab9088f 2ebc710 fabf362 5b9baff ab9088f 2ebc710 5b9baff fabf362 2ebc710 5b9baff 2ebc710 5b9baff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import os, json, base64
from io import BytesIO
from PIL import Image
import gradio as gr
from inference import OcrReorderPipeline
from transformers import AutoProcessor, LayoutLMv3Model, AutoTokenizer
# Load model/tokenizer/processor...
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
model = LayoutLMv3Model.from_pretrained(repo)
tokenizer = AutoTokenizer.from_pretrained(repo, subfolder="preprocessor")
processor = AutoProcessor.from_pretrained(repo, subfolder="preprocessor", apply_ocr=False)
pipe = OcrReorderPipeline(model, tokenizer, processor, device=0)
def infer(image_path, json_file):
img_name = os.path.basename(image_path)
# Parse NDJSON from the uploaded file
data = []
with open(json_file.name, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
data.append(json.loads(line))
entry = next((e for e in data if e["img_name"] == img_name), None)
if entry is None:
return f"❌ No JSON entry found for image '{img_name}'"
words = entry["src_word_list"]
boxes = entry["src_wordbox_list"]
# Read and encode image
img = Image.open(image_path).convert("RGB")
buf = BytesIO(); img.save(buf, format="PNG")
b64 = base64.b64encode(buf.getvalue()).decode()
# Run pipeline
return pipe(b64, words, boxes)[0]
demo = gr.Interface(
fn=infer,
inputs=[
gr.Image(type="filepath", label="Upload Image"),
gr.File(label="Upload JSON (NDJSON format)")
],
outputs="text",
title="OCR Reorder (Image + NDJSON upload)"
)
if __name__ == "__main__":
demo.launch()
|