Uddipan Basu Bir
Download checkpoint from HF hub in OcrReorderPipeline
a0040a5
raw
history blame
1.74 kB
import os
import json
import base64
from io import BytesIO
from PIL import Image
import gradio as gr
from inference import OcrReorderPipeline
from transformers import AutoProcessor, LayoutLMv3Model, AutoTokenizer
# 1) Load model/tokenizer/processor
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
model = LayoutLMv3Model.from_pretrained(repo)
tokenizer = AutoTokenizer.from_pretrained(repo, subfolder="preprocessor")
processor = AutoProcessor.from_pretrained(repo, subfolder="preprocessor", apply_ocr=False)
pipe = OcrReorderPipeline(model, tokenizer, processor, device=0)
def infer(image_path, json_file):
img_name = os.path.basename(image_path)
# Parse NDJSON
data = []
with open(json_file.name, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
data.append(json.loads(line))
entry = next((e for e in data if e["img_name"] == img_name), None)
if entry is None:
return f"❌ No JSON entry found for image '{img_name}'"
words = entry["src_word_list"]
boxes = entry["src_wordbox_list"]
# Read & encode image
img = Image.open(image_path).convert("RGB")
buf = BytesIO(); img.save(buf, format="PNG")
b64 = base64.b64encode(buf.getvalue()).decode()
# ⚠️ Pass as `inputs`
reordered = pipe(inputs=b64, words=words, boxes=boxes)[0]
return reordered
demo = gr.Interface(
fn=infer,
inputs=[
gr.Image(type="filepath", label="Upload Image"),
gr.File(label="Upload JSON (NDJSON)")
],
outputs="text",
title="OCR Reorder Pipeline"
)
if __name__ == "__main__":
# set share=True if you want a public link
demo.launch()