Uddipan Basu Bir commited on
Commit
b701d44
Β·
1 Parent(s): 2ebc710

Download checkpoint from HF hub in OcrReorderPipeline

Browse files
Files changed (1) hide show
  1. app.py +22 -11
app.py CHANGED
@@ -1,21 +1,28 @@
1
- import os, json, base64
 
 
2
  from io import BytesIO
3
  from PIL import Image
4
  import gradio as gr
 
5
  from inference import OcrReorderPipeline
6
  from transformers import AutoProcessor, LayoutLMv3Model, AutoTokenizer
7
 
8
- # Load model/tokenizer/processor...
9
  repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
10
  model = LayoutLMv3Model.from_pretrained(repo)
11
  tokenizer = AutoTokenizer.from_pretrained(repo, subfolder="preprocessor")
12
  processor = AutoProcessor.from_pretrained(repo, subfolder="preprocessor", apply_ocr=False)
13
- pipe = OcrReorderPipeline(model, tokenizer, processor, device=0)
14
 
 
 
 
 
15
  def infer(image_path, json_file):
 
16
  img_name = os.path.basename(image_path)
17
 
18
- # Parse NDJSON from the uploaded file
19
  data = []
20
  with open(json_file.name, "r", encoding="utf-8") as f:
21
  for line in f:
@@ -24,6 +31,7 @@ def infer(image_path, json_file):
24
  continue
25
  data.append(json.loads(line))
26
 
 
27
  entry = next((e for e in data if e["img_name"] == img_name), None)
28
  if entry is None:
29
  return f"❌ No JSON entry found for image '{img_name}'"
@@ -31,22 +39,25 @@ def infer(image_path, json_file):
31
  words = entry["src_word_list"]
32
  boxes = entry["src_wordbox_list"]
33
 
34
- # Read and encode image
35
  img = Image.open(image_path).convert("RGB")
36
- buf = BytesIO(); img.save(buf, format="PNG")
 
37
  b64 = base64.b64encode(buf.getvalue()).decode()
38
 
39
- # Run pipeline
40
- return pipe(b64, words, boxes)[0]
 
41
 
 
42
  demo = gr.Interface(
43
  fn=infer,
44
  inputs=[
45
- gr.Image(type="filepath", label="Upload Image"),
46
- gr.File(label="Upload JSON (NDJSON format)")
47
  ],
48
  outputs="text",
49
- title="OCR Reorder (Image + NDJSON upload)"
50
  )
51
 
52
  if __name__ == "__main__":
 
1
+ import os
2
+ import json
3
+ import base64
4
  from io import BytesIO
5
  from PIL import Image
6
  import gradio as gr
7
+
8
  from inference import OcrReorderPipeline
9
  from transformers import AutoProcessor, LayoutLMv3Model, AutoTokenizer
10
 
11
+ # ── 1) Load model/tokenizer/processor ─────────────────────────────────────
12
  repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
13
  model = LayoutLMv3Model.from_pretrained(repo)
14
  tokenizer = AutoTokenizer.from_pretrained(repo, subfolder="preprocessor")
15
  processor = AutoProcessor.from_pretrained(repo, subfolder="preprocessor", apply_ocr=False)
 
16
 
17
+ # instantiate your custom pipeline
18
+ pipe = OcrReorderPipeline(model, tokenizer, processor, device=0)
19
+
20
+ # ── 2) Inference function ─────────────────────────────────────────────────
21
  def infer(image_path, json_file):
22
+ # Extract filename
23
  img_name = os.path.basename(image_path)
24
 
25
+ # Parse NDJSON (one JSON object per line)
26
  data = []
27
  with open(json_file.name, "r", encoding="utf-8") as f:
28
  for line in f:
 
31
  continue
32
  data.append(json.loads(line))
33
 
34
+ # Find the matching entry
35
  entry = next((e for e in data if e["img_name"] == img_name), None)
36
  if entry is None:
37
  return f"❌ No JSON entry found for image '{img_name}'"
 
39
  words = entry["src_word_list"]
40
  boxes = entry["src_wordbox_list"]
41
 
42
+ # Load & encode the image as base64
43
  img = Image.open(image_path).convert("RGB")
44
+ buf = BytesIO()
45
+ img.save(buf, format="PNG")
46
  b64 = base64.b64encode(buf.getvalue()).decode()
47
 
48
+ # ▢️ Correct keyword call so preprocess gets all args
49
+ reordered = pipe(image=b64, words=words, boxes=boxes)[0]
50
+ return reordered
51
 
52
+ # ── 3) Build the Gradio interface ───────────────────────────────────────────
53
  demo = gr.Interface(
54
  fn=infer,
55
  inputs=[
56
+ gr.Image(type="filepath", label="Upload Image"),
57
+ gr.File(label="Upload JSON (NDJSON)")
58
  ],
59
  outputs="text",
60
+ title="OCR Reorder Pipeline"
61
  )
62
 
63
  if __name__ == "__main__":